OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Optics of human eye: 400 years of exploration from Galileo’s time

Pablo Artal and Juan Tabernero  »View Author Affiliations

Applied Optics, Vol. 49, Issue 16, pp. D123-D130 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a brief historical background and a description of the main features of the eye’s optical properties: the eye is a simple, but rather optimized, optical instrument. It is only since Galileo’s time that the importance of the eye as a part of different optical instruments has driven a continuous scientific exploration of ocular optics. In the past decade, the use of wavefront sensing technology allowed us to complete our understating of eye optics as a robust aplanatic system.

© 2010 Optical Society of America

OCIS Codes
(000.2850) General : History and philosophy
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Vision Optics

Original Manuscript: November 30, 2009
Revised Manuscript: April 15, 2010
Manuscript Accepted: April 26, 2010
Published: May 17, 2010

Virtual Issues
(2010) Advances in Optics and Photonics
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Pablo Artal and Juan Tabernero, "Optics of human eye: 400 years of exploration from Galileo’s time," Appl. Opt. 49, D123-D130 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photon. 2, 586–589 (2008). [CrossRef]
  2. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007). [CrossRef]
  3. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002). [CrossRef]
  4. N. J. Wade and S. Finger, “The eye as an optical instrument: from camera obscura to Helmholtz’s perspective,” Perception 30, 1157–1177 (2001). [CrossRef] [PubMed]
  5. N. J. Wade, “Image, eye, and retina,” J. Opt. Soc. Am. A 24, 1229–1249 (2007). [CrossRef]
  6. Y. Zik, “Galileo and optical aberrations,” Nuncius J. Hist. Science 17, 455–465 (2002).
  7. V. Greco, G. Molesini, and F. Quercioli, “Telescopes of Galileo,” Appl. Opt. 32, 6219–6226 (1993). [CrossRef] [PubMed]
  8. A. Van Helden, “Introduction,” in Sidereus Nuncius, Galileo Galilei, translated by A.Van Helden (U. Chicago Press, 1989), pp. 13–14.
  9. T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801). [CrossRef]
  10. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370–376 (1949). [CrossRef] [PubMed]
  11. I. Newton, Opticks (1730), 4th ed., Book 1, Part 2, Prop. VIII. (reprinted by Bell, 1931).
  12. T. Young, “An account of some cases of the productions of colors, not hitherto described,” Philos. Trans. R. Soc. London 92, 387–397 (1802). [CrossRef]
  13. A. C. S. Van Heel, “Correcting the spherical and chromatic aberrations of the eye,” J. Opt. Soc. Am. 36, 237–239 (1946). [CrossRef] [PubMed]
  14. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007). [CrossRef]
  15. D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  16. J. P. C. Southall, Helmholtz’s Treatise on Physiological Optics (Optical Society of America, 1924), Vol. 1.
  17. Y. Le Grand and S. G. El Hage, Physiological Optics(Springer, 1980).
  18. H. H. Emsley, Visual Optics (Butterworth, 1952).
  19. N. H. L. Ridley, “Intraocular acrylic lenses after cataract extraction,” Lancet 259, 118–129 (1952). [CrossRef]
  20. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961). [PubMed]
  21. S. G. El Hage and F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973). [CrossRef] [PubMed]
  22. M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vision Res. 19, 685–687(1979). [CrossRef] [PubMed]
  23. A. Tomlinson, R. P. Hememger, and R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629(1993).
  24. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of the human eye using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987). [CrossRef] [PubMed]
  25. I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998). [CrossRef]
  26. P. Artal and A. Guirao, “Contribution of corneal and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715(1998). [CrossRef]
  27. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of the WA’s aberration of the human eye with the use of a Hartmann–Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  28. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  29. P. Artal, P. A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001). [CrossRef]
  30. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006). [CrossRef]
  31. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  32. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  33. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  34. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001). [CrossRef] [PubMed]
  35. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971). [CrossRef]
  36. A. C. Kooijman, “Light distribution on the retina of a wide angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983). [CrossRef] [PubMed]
  37. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985). [CrossRef] [PubMed]
  38. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005). [CrossRef]
  39. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997). [CrossRef]
  40. D. Siedlecki, H. Kasprzak, and B. Pierscionek, “Schematic eye with a gradient index lens and aspheric surfaces,” Opt. Lett. 29, 1197–1199 (2004). [CrossRef] [PubMed]
  41. A. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient index lens,” J. Opt. Soc. Am. A 24, 2157–2174(2007). [CrossRef]
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3660 (1992). [CrossRef] [PubMed]
  43. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle Ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995). [CrossRef]
  44. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999). [CrossRef]
  45. R. B. Rabbetts, Bennett and Rabbetts’ Clinical Visual Optics (Butterworth-Heinemann, 1998).
  46. S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25, 153–61 (2005). [CrossRef] [PubMed]
  47. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002). [CrossRef] [PubMed]
  48. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  49. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  50. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004). [CrossRef]
  51. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006). [CrossRef] [PubMed]
  52. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998). [CrossRef]
  53. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009). [CrossRef]
  54. R. Navarro, M. Ferro, P. Artal, and I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993). [CrossRef] [PubMed]
  55. P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779(1995). [CrossRef]
  56. N. E. S. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34, 7327–7333 (1995). [CrossRef] [PubMed]
  57. D. A. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991). [CrossRef] [PubMed]
  58. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002). [PubMed]
  59. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683–691 (2002). [PubMed]
  60. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007). [CrossRef] [PubMed]
  61. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634–S638 (2002). [PubMed]
  62. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009). [CrossRef] [PubMed]
  63. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  64. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  65. L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1–11(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited