OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Structural optimization for broadband scattering in several ultra-thin white beetle scales

Stephen M. Luke, Benny T. Hallam, and Peter Vukusic  »View Author Affiliations

Applied Optics, Vol. 49, Issue 22, pp. 4246-4254 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent work discovered the remarkable optical scattering properties of the scales of the white beetle Cyphochilus. It was suggested that its brilliant whiteness and brightness were due to optimization of the microstructure within its scales. Here we compare the microstructure of Cyphochilus scales to those of two other white beetles, Lepidiota stigma and Calothyrza margaritifera. Extensive optical modeling and experimental data suggest that each species displays structural optimization designed to maximize optical scatter. Optimization of the scale filling fraction is observed, as well as optimization of scattering center spacing and diameter. Cyphochilus, in particular, displays a high degree of structural optimization, resulting in its bright white appearance.

© 2010 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(160.1435) Materials : Biomaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: April 2, 2010
Revised Manuscript: June 4, 2010
Manuscript Accepted: June 4, 2010
Published: July 28, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Stephen M. Luke, Benny T. Hallam, and Peter Vukusic, "Structural optimization for broadband scattering in several ultra-thin white beetle scales," Appl. Opt. 49, 4246-4254 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Liebherr and J. V. McHugh in Encyclopedia of Insects, V.H.Resh and R.T.Carde, eds. (Academic, 2003), pp. 209–230.
  2. A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  3. J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005). [CrossRef]
  4. P. Vukusic, “Natural coatings,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer2003), pp. 1–34.
  5. T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942). [CrossRef]
  6. C. W. Mason, “Structural colours in insects. II,” J. Phys. Chem. 31, 321–354 (1927). [CrossRef]
  7. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003). [CrossRef] [PubMed]
  8. V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007). [CrossRef]
  9. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).
  10. P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).
  11. M. Srinivasarao, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999). [CrossRef]
  12. T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.
  13. S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006). [CrossRef]
  14. L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).
  15. C. W. Mason, “Structural colors in insects. I,”’ J. Phys. Chem. 30, 383–395 (1926). [CrossRef]
  16. D. L. Fox, Animal Biochromes and Structural Colors(Cambridge U. Press, 1953).
  17. S. M. Luke, P. Vukusic, and B. T. Hallam, “Measuring and modeling optical scattering and the color quality of white pierid butterfly scales,” Opt. Express 17, 14729–14743 (2009). [CrossRef] [PubMed]
  18. D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004). [CrossRef]
  19. P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007). [CrossRef] [PubMed]
  20. B. T. Hallam, A. G. Hiorns, and P. Vukusic, “Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles,” Appl. Opt. 48, 3243–3249(2009). [CrossRef] [PubMed]
  21. F. B. Stieg, “Opaque white pigments in coatings,” in Applied Polymer Science, 2nd ed., Vol. 285 of ACS Symposium Series, R.W.Tess and G.W.Poehlein, eds. (American Chemical Society, 1985), pp 1249–1269. [CrossRef]
  22. L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000). [CrossRef]
  23. F. B. Stieg, “Ending the ‘crowding/spacing theory’ debate,” J. Coat. Technol. 59, 96–97 (1987).
  24. J. H. Braun, “Crowding and spacing of titanium dioxide pigments,” J. Coat. Technol. 60, 67–71 (1988).
  25. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Molec. Biol. 24, 75–106 (1972). [CrossRef]
  26. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003). [CrossRef]
  27. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999). [CrossRef]
  28. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).
  29. N. Pauler, Paper Optics (Lorentzen & Wettre, 2000).
  30. E. Ganz, “Whiteness: photometric specification and colorimetric evaluation,” Appl. Opt. 15, 2039–2058 (1976). [CrossRef] [PubMed]
  31. M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985). [CrossRef]
  32. J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009). [CrossRef]
  33. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009). [PubMed]
  34. N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992). [CrossRef]
  35. R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005). [CrossRef]
  36. D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006). [CrossRef]
  37. D. J. Kemp, “Female butterflies prefer males bearing bright iridescent ornamentation,” Proc. R. Soc. London Ser. B 274, 1043–1047 (2007). [CrossRef]
  38. A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited