OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Sensitivity of spatially resolved reflectance signals to coincident variations in tissue optical properties

Dizem Arifler  »View Author Affiliations


Applied Optics, Vol. 49, Issue 22, pp. 4310-4320 (2010)
http://dx.doi.org/10.1364/AO.49.004310


View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Canonical correlation analysis, a multivariate statistical technique, was used to investigate the degree of association between tissue optical properties and spatially resolved reflectance signals. Monte Carlo modeling was employed to simulate signals corresponding to different combinations of optical properties and these data sets were fed as input to statistical analysis. The results show that it is possible to adjust the separation and angular orientation of source and detector fibers such that the effect of a particular optical property will be augmented among coincident variations in other properties. The trends observed exhibit differences when compared with a conventional univariate sensitivity analysis in which only a single property is varied whereas all other parameters of interest are kept constant.

© 2010 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 11, 2009
Revised Manuscript: June 1, 2010
Manuscript Accepted: June 25, 2010
Published: July 30, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Dizem Arifler, "Sensitivity of spatially resolved reflectance signals to coincident variations in tissue optical properties," Appl. Opt. 49, 4310-4320 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-22-4310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725–731 (2008). [CrossRef]
  2. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV–visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20, 119–131 (2009). [CrossRef] [PubMed]
  3. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, “Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer,” J. Biomed. Opt. 10, 024032 (2005). [CrossRef] [PubMed]
  4. D. Hidovic-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50, 1071–1093 (2005). [CrossRef] [PubMed]
  5. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11, 064027 (2006). [CrossRef]
  6. O. P. Kaspers, H. J. C. M. Sterenborg, and A. Amelink, “Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence,” Appl. Opt. 47, 365–371 (2008). [CrossRef] [PubMed]
  7. I. Pavlova, C. R. Weber, R. A. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, and R. Richards-Kortum, “Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer,” J. Biomed. Opt. 13, 064012 (2008). [CrossRef]
  8. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997). [CrossRef] [PubMed]
  9. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062–1071 (2006). [CrossRef] [PubMed]
  10. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45, 1072–1078 (2006). [CrossRef] [PubMed]
  11. B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt. 13, 060505 (2008). [CrossRef]
  12. Q. Wang, H. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: development and implementation of a fiberoptic-based system,” Opt. Express 16, 8685–8703(2008). [CrossRef] [PubMed]
  13. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13, 050501 (2008). [CrossRef] [PubMed]
  14. U. Utzinger and R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147(2003). [CrossRef] [PubMed]
  15. A. Wang, V. Nammalavar, and R. Drezek, “Experimental evaluation of angularly variable fiber geometry for targeting depth-resolved reflectance from layered epithelial tissue phantoms,” J. Biomed. Opt. 12, 044011 (2007). [CrossRef] [PubMed]
  16. J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105, 439–445 (2007). [CrossRef] [PubMed]
  17. L. T. Nieman, C. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008). [CrossRef] [PubMed]
  18. W. J. Conover, Practical Nonparametric Statistics (Wiley, 1999).
  19. W. R. Dillon and M. Goldstein, Multivariate Analysis: Methods and Applications (Wiley, 1984).
  20. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).
  21. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  22. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. MacAulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003). [CrossRef] [PubMed]
  23. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44, 2072–2081 (2005). [CrossRef] [PubMed]
  24. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92, 3260–3274 (2007). [CrossRef] [PubMed]
  25. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628–6637 (1999). [CrossRef]
  26. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  27. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18, 584–599 (2001). [CrossRef]
  28. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, “Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements,” Appl. Opt. 45, 8152–8162 (2006). [CrossRef] [PubMed]
  29. C. R. Weber, R. A. Schwarz, E. N. Atkinson, D. D. Cox, C. MacAulay, M. Follen, and R. Richards-Kortum, “Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer,” J. Biomed. Opt. 13, 064016 (2008). [CrossRef]
  30. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087–1089 (2004). [CrossRef] [PubMed]
  31. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10, 034018 (2005). [CrossRef] [PubMed]
  32. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674 (2006). [CrossRef] [PubMed]
  33. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317–7328 (2007). [CrossRef] [PubMed]
  34. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8, 495–503 (2003). [CrossRef] [PubMed]
  35. J. Ramachandran, T. M. Powers, S. Carpenter, A. Garcia-Lopez, J. P. Freyer, and J. R. Mourant, “Light scattering and microarchitectural differences between tumorigenic and non-tumorigenic cell models of tissue,” Opt. Express 15, 4039–4053 (2007). [CrossRef] [PubMed]
  36. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys J. 88, 2929–2938(2005). [CrossRef] [PubMed]
  37. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32, 2517–2519 (2007). [CrossRef] [PubMed]
  38. P. M. Pilarski, X. Su, D. M. Glerum, W. Rozmus, and C. J. Backhouse, “Rapid simulation of wide-angle scattering from mitochondria in single cells,” Opt. Express 16, 12819–12834(2008). [CrossRef] [PubMed]
  39. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the δ-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677–4684 (2004). [CrossRef] [PubMed]
  40. S. Menon, Q. Su, and R. Grobe, “Determination of g and μ using multiply scattered light in turbid media,” Phys. Rev. Lett. 94, 153904 (2005). [CrossRef] [PubMed]
  41. N. Joshi, C. Donner, and H. W. Jensen, “Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination,” Opt. Lett. 31, 936–938 (2006). [CrossRef] [PubMed]
  42. A.J.Welch and M.J. C.van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  43. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996). [CrossRef] [PubMed]
  44. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett. 26, 1571–1573 (2001). [CrossRef]
  45. H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett. 31, 933–935 (2006). [CrossRef] [PubMed]
  46. C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt. 13, 034014 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited