OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Hyperspectral Shack–Hartmann test

Gabriel C. Birch, Michael R. Descour, and Tomasz S. Tkaczyk  »View Author Affiliations

Applied Optics, Vol. 49, Issue 28, pp. 5399-5406 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700 nm in 5 and 10 nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12 μm for the singlet lens and 5 μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization.

© 2010 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design
(220.4840) Optical design and fabrication : Testing

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 29, 2010
Revised Manuscript: August 30, 2010
Manuscript Accepted: September 1, 2010
Published: September 27, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Gabriel C. Birch, Michael R. Descour, and Tomasz S. Tkaczyk, "Hyperspectral Shack–Hartmann test," Appl. Opt. 49, 5399-5406 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Liang, “Miniature microscope objective lens,” U.S. patent 7,023,622 (4 April 2006).
  2. B. P. McCall, G. Birch, M. R. Descour, and T. S. Tkaczyk, “Fabrication of microlens array by diamond milling with spherical shaped milling tools,” Proc. SPIE 7590, 75900A (2010). (SPIE). [CrossRef]
  3. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48, 3375–3384 (2009). [CrossRef] [PubMed]
  4. C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in vivoimaging,” Opt. Express 9, 821–830 (2001). [CrossRef] [PubMed]
  5. “Photography—electronic still-picture cameras—resolution measurements,” International Organization for Standardization, ISO Standard 19012-2 (2009).
  6. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443, 765–765 (2006). [CrossRef] [PubMed]
  7. K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004). [CrossRef] [PubMed]
  8. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838–1843 (1994). [CrossRef] [PubMed]
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, and B. W. Woods, “Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000). [CrossRef]
  10. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  11. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973 (2007). [CrossRef]
  12. R. G. Lane and M. Tallon, “Wavefront reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef] [PubMed]
  13. R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002). [CrossRef]
  14. E. A. Orlenko, T. Y. Cherezova, Y. V. Sheldakova, A. L. Rukosuev, and A. V. Kudryashov, “Off-axis parabolic mirrors: A method of adjusting them and of measuring and correcting their aberrations,” J. Opt. Technol. 72, 306–312 (2005). [CrossRef]
  15. J. Pfund, N. Lindlein, and J. Schwider, “Non-null testing of rotationally symmetric aspheres: A systematic error assessment,” Appl. Opt. 40, 439–446 (2001). [CrossRef]
  16. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Optics 39, 2067–2070 (2000). [CrossRef]
  17. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  18. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Optics 45, 2545–2554 (2006). [CrossRef]
  19. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15, 2409–2420 (2007). [CrossRef] [PubMed]
  20. J. D. Rogers, S. Landau, T. S. Tkaczyk, M. R. Descour, M. S. Rahman, R. Richards-Kortum, A. H. O. Karkainen, and T. Christenson, “Imaging performance of a miniature integrated microendoscope,” J. Biomed. Opt. 13, 054020 (2008). [CrossRef] [PubMed]
  21. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002). [CrossRef] [PubMed]
  22. H. Tsuchida, S. Noda, T. Nagaoka, and K. Yamamoto, “Chromatic properties of SiO2-BaO-TiO2-K2O series radial gradient-index material,” Opt. Rev. 8, 81–84 (2001). [CrossRef]
  23. H. Tsuchida, S. Ogasawara, and K. Yamamoto, “Characteristics of a lens system using low-dispersive radial gradient-index material,” Opt. Rev. 7, 337–340 (2000). [CrossRef]
  24. J. W. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wavefront sensor,” Appl. Opt. 44, 4838–4845 (2005). [CrossRef] [PubMed]
  25. International Organization for Standardization, “Photography–electronic still-picture cameras–resolution measurements,” ISO 12233 (2000).
  26. J. Lee, “The development of a miniature imaging system: Design, fabrication, and metrology,” Ph.D. thesis (The University of Arizona, 2003), p. 198.
  27. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef] [PubMed]
  28. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80, 26–35 (2003). [CrossRef] [PubMed]
  29. P. Jain and J. Schwiegerling, “RGB Shack–Hartmann wavefront sensor,” J. Mod. Opt. 55, 737–748 (2008). [CrossRef]
  30. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008). [CrossRef] [PubMed]
  31. E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006). [CrossRef] [PubMed]
  32. M. A. Lundgren and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991). [CrossRef]
  33. I. Powell, “Employment of reverse optimization to relax manufacturing tolerances imposed on system constructional parameters associated with complex optical systems,” Appl. Opt. 39, 2174–2183 (2000). [CrossRef]
  34. J. A. Sakamoto, H. H. Barrett, and A. V. Goncharov, “Inverse optical design of the human eye using likelihood methods and wavefront sensing,” Opt. Express 16, 304–314 (2008). [CrossRef] [PubMed]
  35. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16, 1692–1703(2008). [CrossRef] [PubMed]
  36. H. J. Jeong and G. N. Lawrence, “Simultaneous determination of misalignment and mirror surface figure error of a three mirror off-axis telescope by end-to-end measurements and reverse optimization: numerical analysis and simulation, Proc. SPIE 966, 341–351 (1988).
  37. P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J.Pawley, ed. (Springer, 2006), Chap. 40. [CrossRef]
  38. S. W. Hell, K. I. Willig, M. Dyba, S. Jakobs, L. Kastrup, and V. Westphal, “Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts,” in Handbook of Biological Confocal Microscopy, J.P.Pawley, ed. (Springer Science+Business Media, 2006), pp. 571–579. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited