OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Uncertainties associated to measurements of inherent optical properties in natural waters

Edouard Leymarie, David Doxaran, and Marcel Babin  »View Author Affiliations

Applied Optics, Vol. 49, Issue 28, pp. 5415-5436 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monte Carlo simulations are used to explain and quantify the errors in inherent optical properties (IOPs) (absorption and attenuation coefficients) measured using the WET Labs AC-9 submarine spectrophotometer, and to assess correction algorithms. Simulated samples with a wide range of IOPs encountered in natural waters are examined. The relative errors on the measured absorption coefficient are in general lower than 25%, but reach up to 100% in highly scattering waters. Relative errors on attenuation and scattering coefficients are more stable, with an underestimation mainly driven by the volume scattering function. The errors in attenuation and scattering spectral shapes are small.

© 2010 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 5, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: August 10, 2010
Published: September 28, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Edouard Leymarie, David Doxaran, and Marcel Babin, "Uncertainties associated to measurements of inherent optical properties in natural waters," Appl. Opt. 49, 5415-5436 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008). [CrossRef]
  2. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994). [CrossRef]
  3. J. R. V. Zaneveld, J. C. Kitchen, A. Bricaud, and C. C. Moore, “Analysis of in-situ spectral absorption meter data,” Proc. SPIE 1750, 187–200 (1992). [CrossRef]
  4. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046(1997). [CrossRef] [PubMed]
  5. V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A 105, 8916–8921(2001). [CrossRef]
  6. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependence of absorption by water and heavy water in the 450–750nm spectral range,” Appl. Opt. 45, 5294–5309 (2006). [CrossRef] [PubMed]
  7. J. Piskozub, D. Stramski, E. Terril, and W. K. Melville, “Influence of forward and multiple light scatter on the measurements of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723–4731 (2004). [CrossRef] [PubMed]
  8. J. R. V. Zaneveld and R. Bartz, “Beam attenuation and absorption meters,” Proc. SPIE 489, 318–324 (1984).
  9. K. J. Voss and R. W. Austin, “Beam attenuation measurement error due to small-angle scattering acceptance,” J. Atmos. Ocean. Technol. 10, 113–121 (1993). [CrossRef]
  10. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009). [CrossRef] [PubMed]
  11. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modelling,” Appl. Opt. 36, 6123–6128 (1997). [CrossRef] [PubMed]
  12. R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39, 6118–6127 (2000). [CrossRef]
  13. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Contract No. N62269-71-C-0676, UCSD, SIO Ref. 72–78 (Scripps Institution of Oceanography, 1972).
  14. J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468(1992). [CrossRef] [PubMed]
  15. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  16. J. Piskozub, P. J. Flatau, and J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Ocean. Technol. 18, 438–445 (2001). [CrossRef]
  17. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700nm) of pure water,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  18. L. H. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5μm spectral range,” Appl. Opt. 32, 3531–3540 (1993). [CrossRef] [PubMed]
  19. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N.G.Jerlov and E.S.Nielsen, eds. (Academic, 1974), pp. 1–24.
  20. X. Zhang, L. Hu, and M. X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009). [CrossRef] [PubMed]
  21. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  22. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficient of natural phytoplankton: analysis and parametrization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  23. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44, 412–422 (2005). [CrossRef] [PubMed]
  24. H. R. Gordon and A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery, a review,” Lecture Notes on Coastal and Estuarine Studies (Springer Verlag, 1983), Vol. 4.
  25. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  26. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211–3230 (2003). [CrossRef]
  27. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  28. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003). [CrossRef]
  29. S. Sathyendranath, L. Prieur, and A. Morel, “A 3 component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989). [CrossRef]
  30. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared,” Limnol. Oceanogr. 54, 1257–1271(2009). [CrossRef]
  31. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  32. D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006). [CrossRef] [PubMed]
  33. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998). [CrossRef]
  34. G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994). [CrossRef]
  35. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef] [PubMed]
  36. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001). [CrossRef]
  37. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009). [CrossRef] [PubMed]
  38. A. Morel, “Light scattering by seawater. Experimental results and theoretical approach,” in Optics of the Sea, AGARD Lecture Series (NATO, 1973), pp. 3.1.1–3.1.76.
  39. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001). [CrossRef]
  40. D. McKee, J. Piskozub, and I. Brown, “Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16, 19480–19492 (2008). [CrossRef] [PubMed]
  41. D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369–4374 (2003). [CrossRef] [PubMed]
  42. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002). [CrossRef]
  43. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756–767 (2004). [CrossRef]
  44. S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42, 4802–4810 (2003). [CrossRef] [PubMed]
  45. R. Röttgers, A. Bracher, S. Gehnke, B. Schmitt, and S. Wozniak, “Light absorption by natural aquatic particles in the near-infrared (700–900nm) spectral region,” presented at Ocean Optics XIX conference, Barga, Italy, 6 October 2008.
  46. R. Röttgers, Institute for Coastal Research, GKSS Research Center Geesthacht, Max-Planck-Strasse 1, D-21502 (personal communication, 2010).
  47. H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52, 739–752 (2007). [CrossRef]
  48. D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci. 68, 305–316 (2006). [CrossRef]
  49. D. McKee, M. Chami, I. Brown, V. Sanjuan Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited