OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 3 — Feb. 10, 2010

Search-based active optic systems for aberration correction in time-independent applications

Walter Lubeigt, Simon P. Poland, Gareth J. Valentine, Amanda J. Wright, John M. Girkin, and David Burns  »View Author Affiliations

Applied Optics, Vol. 49, Issue 3, pp. 307-314 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a protocol for the use of a control feedback loop incorporating an iterative optimization routine for a range of time-independent adaptive optics applications. These applications are characterized by the quasi steady state of the aberrative effects ( > 0.1 s ) and contrast, for instance, to astronomical applications where the aberrations constantly vary at frequencies above 10 Hz . For optimal performance in such time-independent applications, the control systems typically require specialized tailoring. A typical example of two different types of time-independent adaptive optics applications—an adaptive optic microscope and an adaptive optic laser platform—are detailed and compared. It is shown that implementing a number of minor, but crucial, application-specific modifications to the control system results in an improved efficiency of an already extremely successful technique for aberration compensation. We present a description of the crucial parameters to consider in a search-based adaptive optics system.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(140.6810) Lasers and laser optics : Thermal effects
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Imaging Systems

Original Manuscript: September 17, 2009
Revised Manuscript: December 4, 2009
Manuscript Accepted: December 6, 2009
Published: January 12, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Walter Lubeigt, Simon P. Poland, Gareth J. Valentine, Amanda J. Wright, John M. Girkin, and David Burns, "Search-based active optic systems for aberration correction in time-independent applications," Appl. Opt. 49, 307-314 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  2. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source/multiple distance objects,” Appl. Opt. 36, 3319-3328 (1997). [CrossRef] [PubMed]
  3. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440-1453 (2000). [CrossRef]
  4. C. Paterson and J. Notaras, “Demonstration of closed-loop adaptive optics with a point-diffraction interferometer in strong scintillation with optical vortices,” Opt. Express 15, 13745-14756 (2007). [CrossRef] [PubMed]
  5. Flexible Optical B.V., PO Box 581, 2600 AN, Delft, The Netherlands, www.okotech.com
  6. C. Dainty, Proceedings of the 6th International Workshop on Adaptive Optics for Industry and Medicine (Imperial College Press, 2008).
  7. O. Albert, L. Sherman, G. Mourou, and T. B. Norris, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000). [CrossRef]
  8. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002). [CrossRef] [PubMed]
  9. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  10. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 6, 36-44 (2005). [CrossRef]
  11. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Active wavefront correction in two-photon microscopy using coherence-gated wavefront correction,” Proc. Natl. Acad. Sci. USA 103, 17137-17142 (2006). [CrossRef] [PubMed]
  12. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731-736 (2008). [CrossRef] [PubMed]
  13. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219(2007). [CrossRef] [PubMed]
  14. J. Z.Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  15. E. Fernandez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746-748 (2001). [CrossRef]
  16. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008). [CrossRef] [PubMed]
  17. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002). [PubMed]
  18. U. Wittrock, Y. Buske, and H. M. Heuck, “Adaptive aberration control in laser amplifiers and laser resonators,” Proc. SPIE 4969, 122-136 (2003). [CrossRef]
  19. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005). [CrossRef] [PubMed]
  20. P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278, 377-381 (2007). [CrossRef]
  21. J. Sheldakova, A. Kudryashov, V. Samarkin, and A. Rukosuev, “Laser beam focusing by means of closed-loop adaptive optical system,” presented at the 7th International Workshop on Adaptive Optics for Industry and Medicine, Shatura, Moscow Region, Russia, 8-11 June 2009.
  22. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with designer optical phase,” paper presented at the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, CLEO Europe-EQEC 2009, Munich, Germany, 14-19 June 2009, paper CA 8.5.
  23. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]
  24. M. J. Booth, “Wave front sensor-less adaptive optics: a modal-based approach using sphere packings,” Opt. Express 14, 1339-1352 (2006). [CrossRef] [PubMed]
  25. A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24, 613-617 (1994). [CrossRef]
  26. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663-4668 (1998). [CrossRef]
  27. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35, 2554-2561 (1996). [CrossRef] [PubMed]
  28. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17, 12057-12069(2009). [CrossRef] [PubMed]
  29. J. M. Girkin, S. P. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009). [CrossRef] [PubMed]
  30. W. Koechner, Solid-State Laser Engineering, 5th ed., Springer Series in Optical Sciences (Springer, 1999).
  31. C. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994). [CrossRef] [PubMed]
  32. K. F. Man, Genetic Algorithm: Concept and Designs (Springer, 1999). [CrossRef]
  33. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983). [CrossRef] [PubMed]
  34. A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, “Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror,” Opt. Express 14, 222-228 (2006). [CrossRef] [PubMed]
  35. S. P. Poland, A. J. Wright, and J. M. Girkin, “Active focus locking in an optically sectioning microscope utilizing a deformable membrane mirror,” Opt. Lett. 33, 419-421 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited