OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 3 — Feb. 10, 2010

Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization

Seyoung Moon, Dong Jun Kim, Kyujung Kim, Donghyun Kim, Hosub Lee, Kangtaek Lee, and Seungjoo Haam  »View Author Affiliations


Applied Optics, Vol. 49, Issue 3, pp. 484-491 (2010)
http://dx.doi.org/10.1364/AO.49.000484


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated surface-enhanced plasmon resonance detection of DNA hybridization. Surface enhancement was based on the excitation of localized surface plasmon using subwavelength nanogratings, at a 300 nm period, coated with 24-mer ssDNA oligonucleotide, while optical signatures of DNA were amplified at the same time by gold nanoparticles conjugated with complementary ssDNA strands. When using nanoparticles of different sizes, maximum sensitivity enhancement, of more than 18 times, was obtained with nanoparticles of 20 nm diameter. This enhancement is mainly due to nanoparticle- associated signal amplification. Additional surface enhancement boosted the detection sensitivity by 57%. We have also confirmed the sensitivity enhancement to be linearly related to nanoparticle volume.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 22, 2009
Revised Manuscript: December 13, 2009
Manuscript Accepted: December 14, 2009
Published: January 15, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Seyoung Moon, Dong Jun Kim, Kyujung Kim, Donghyun Kim, Hosub Lee, Kangtaek Lee, and Seungjoo Haam, "Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization," Appl. Opt. 49, 484-491 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-3-484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  2. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380-2392 (2007). [CrossRef] [PubMed]
  3. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077(2000). [CrossRef]
  4. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085-1087 (2006). [CrossRef] [PubMed]
  5. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  6. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006). [CrossRef] [PubMed]
  7. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007). [CrossRef] [PubMed]
  8. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094(2007). [CrossRef] [PubMed]
  9. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29, 2378-2380 (2004). [CrossRef] [PubMed]
  10. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15, 1745-1754 (2007). [CrossRef] [PubMed]
  11. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17, 12145-12154 (2009). [CrossRef] [PubMed]
  12. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027-1034(2009). [CrossRef]
  13. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043-3048(2009). [CrossRef] [PubMed]
  14. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. DOI:10.1109/JSTQE.2009.2034123 (2010).
  15. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034-2038 (2005). [CrossRef] [PubMed]
  16. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006). [CrossRef]
  17. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  18. H. J. Lee, A. Wark, and R. M. Corn, “Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings,” Analyst (Amsterdam) 133, 596-601 (2008).
  19. J. Turkevich, P. C. Stevonson, and J. Hillier, “The nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55-75 (1951). [CrossRef]
  20. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142-143(2001). [CrossRef]
  21. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404-3406(2005). [CrossRef]
  22. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004). [CrossRef]
  23. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007). [CrossRef] [PubMed]
  24. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006). [CrossRef]
  25. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973). [CrossRef]
  26. R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32, 154-157 (1974). [CrossRef]
  27. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904). [CrossRef]
  28. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141(2003). [CrossRef]
  29. E. Prodan, C. Radlo, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003). [CrossRef] [PubMed]
  30. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099-1101 (1996). [CrossRef] [PubMed]
  31. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533-10539 (2007). [CrossRef] [PubMed]
  32. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  33. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244-246 (2009). [CrossRef] [PubMed]
  34. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  35. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996). [CrossRef]
  36. D. K. Roper, “Determining surface plasmon resonance response factors for deposition onto three-dimensional surfaces,” Chem. Eng. Sci. 62, 1988-1996 (2007). [CrossRef] [PubMed]
  37. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998). [CrossRef]
  38. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220-19225 (2006). [CrossRef] [PubMed]
  39. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543-2549 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited