OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography

Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate  »View Author Affiliations


Applied Optics, Vol. 49, Issue 30, pp. 5686-5696 (2010)
http://dx.doi.org/10.1364/AO.49.005686


View Full Text Article

Enhanced HTML    Acrobat PDF (1637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In our previous study, we used optical coherence tomography (OCT) and reported an increase in signal intensity of depth profiles between euthanasia injection and cardiac arrest (CA), demonstrating the potential as a tool for monitoring/diagnosing brain tissue viability [ Appl. Opt. 48, 4354 (2009)]. Here, for the first time to our knowledge, we measured three-dimensional (3D) OCT images through a thinned skull changing temperatures in the rat brain. The measurements were made at 10 min intervals for 210 min to evaluate correlations of temperature with heart rate and ratios of signal intensity (RSI). The 3D image area was 4 m m × 4 m m × 2.8 m m . When the temperature was decreased from 28 ° C to 18 ° C to reduce tissue viability, the heart rate was found to decrease with an increase in RSI. Negative correlation coefficients (CCs) between temperatures and RSIs, and between heart rate and RSIs, were obtained. This indicates that OCT signals increase with reductions of viability caused by decreases in heart rates and temperatures in tissues. These observations correspond to estimations obtained by multiwavelength diffuse reflectance spectroscopy [ Appl. Opt. 47, 4164 (2008)]. CCs and stationary RSIs would depend upon measured positions in tissues. Without injections for euthanasia, a similar rapid increase in RSI has also been measured before CA.

© 2010 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 26, 2010
Revised Manuscript: July 12, 2010
Manuscript Accepted: August 23, 2010
Published: October 12, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Manabu Sato, Daisuke Nomura, Takashi Tsunenari, and Izumi Nishidate, "In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography," Appl. Opt. 49, 5686-5696 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-30-5686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004). [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1–7 (2004).
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004). [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007). [CrossRef]
  7. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990). [CrossRef] [PubMed]
  8. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002). [CrossRef]
  9. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003). [CrossRef] [PubMed]
  10. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459–3461 (2006). [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006). [CrossRef] [PubMed]
  12. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008). [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009). [CrossRef]
  14. K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exper. Transl. Stroke Med. 1, 6 (2009). [CrossRef]
  15. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009). [CrossRef] [PubMed]
  16. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neuroscience 105, 6409–6414 (2008).
  17. X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008). [CrossRef] [PubMed]
  18. L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).
  19. N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002). [CrossRef] [PubMed]
  20. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  21. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteons,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959). [CrossRef] [PubMed]
  22. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002). [CrossRef] [PubMed]
  23. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006). [CrossRef] [PubMed]
  24. E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci. 4, 399–415 (2003). [CrossRef] [PubMed]
  25. G. Paxinos, The Rat Nervous System (Elsevier, 2004).
  26. S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077 (2000). [CrossRef] [PubMed]
  27. K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994). [CrossRef]
  28. E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).
  29. T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited