OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Depth-resolved velocimetry of Hagen–Poiseuille and electro-osmotic flow using dynamic phase-contrast microscopy

Michael Esseling, Frank Holtmann, Mike Woerdemann, and Cornelia Denz  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 6030-6038 (2010)
http://dx.doi.org/10.1364/AO.49.006030


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We quantitatively investigate the axial imaging properties of dynamic phase-contrast microscopy, with a special focus on typical combinations of tracer particles and magnifications that are used for velocimetry analysis. We show, for the first time, that a dynamic phase-contrast microscope, which is the integration of an all-optical novelty filter in a commercially available inverted microscope, can visualize three- dimensional velocity fields with a significantly reduced optical sectioning depth. The depth of field for dynamic phase-contrast microscopy is extracted from the three-dimensional response function and compared with the respective values for incoherent bright-field illumination. These results are then used to perform a depth-resolved particle image velocimetry analysis of Hagen–Poiseuille as well as electro-osmotically actuated flows in a microchannel.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(190.7070) Nonlinear optics : Two-wave mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 30, 2010
Manuscript Accepted: September 14, 2010
Published: October 26, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Michael Esseling, Frank Holtmann, Mike Woerdemann, and Cornelia Denz, "Depth-resolved velocimetry of Hagen–Poiseuille and electro-osmotic flow using dynamic phase-contrast microscopy," Appl. Opt. 49, 6030-6038 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-31-6030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schaefer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). [CrossRef]
  2. P. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003). [CrossRef]
  3. B. E. Zima-Kulisiewicz and A. Delgado, “Synergetic microorganismic convection generated by Opercularia asymmetrica ciliates living in a colony as effective fluid transport on the micro-scale,” J. Biomech. 42, 2255–2262 (2009). [CrossRef] [PubMed]
  4. S. T. Wereley and C. D. Meinhart, “Recent advances in micro-particle image velocimetry,” Annu. Rev. Fluid Mech. 42, 557–576 (2010). [CrossRef]
  5. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955). [CrossRef] [PubMed]
  6. J. Gluckstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996). [CrossRef]
  7. T. Horio and H. Hotani, “Visualization of the dynamic instability of individual microtubules by dark-field microscopy,” Nature 321, 605–607 (1986). [CrossRef] [PubMed]
  8. J. W. Taraskaz and W. N. Zagotta, “Fluorescence applications in molecular neurobiology,” Neuron 66, 170–189 (2010). [CrossRef]
  9. P. Houpt and A. Draaijer, A Real-Time Confocal Scanning Microscope for Fluorescence and Reflection, Institute of Physics Conference Series (Institute of Physics, 1990), pp. 639–642.
  10. J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  11. E. Wang, C. Babbey, and K. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. Oxford 218, 148–159 (2005). [CrossRef]
  12. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef] [PubMed]
  13. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  14. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009). [CrossRef] [PubMed]
  15. W. Kowalczyk, B. Zima, and A. Delgado, “A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms,” Exp. Fluids 43, 147–150(2007). [CrossRef]
  16. C. Meinhart, S. Wereley, and M. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000). [CrossRef]
  17. D. Anderson, D. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987). [CrossRef] [PubMed]
  18. P. Yeh, Introduction to Photorefractive Nonlinear Optics(Wiley-Interscience, 1993).
  19. R. Cudney, R. Pierce, and J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988). [CrossRef]
  20. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987). [CrossRef] [PubMed]
  21. M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008). [CrossRef]
  22. V. Krishnamachari and C. Denz, “Real-time phase measurement with a photorefractive novelty filter microscope,” J. Opt. A: Pure Appl. Opt. 5, S239–S243 (2003). [CrossRef]
  23. V. Krishnamachari and C. Denz, “A phase-triggering technique to extend the phase-measurement range of a photorefractive novelty filter microscope,” Appl. Phys. B 79, 497–501 (2004). [CrossRef]
  24. F. Holtmann, M. Eversloh, and C. Denz, “Label-free analysis of microfluidic mixing processes by dynamic phase contrast microscopy,” J. Opt. A: Pure Appl. Opt. 11, 034014(2009). [CrossRef]
  25. C. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991). [CrossRef]
  26. F. Holtmann, M. Oevermann, and C. Denz, “Dynamic phase-contrast stereoscopy for microflow velocimetry,” Appl. Phys. B 95, 633–636 (2009). [CrossRef]
  27. F. Lucas, “The architecture of living cells—recent advances in methods of biological research—optical sectioning with the ultra-violet microscope,” Proc. Natl. Acad. Sci. USA 16, 599–607 (1930). [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  29. S. Inoué and K. Spring, Video Microscopy: the Fundamentals (Plenum, 1997). [CrossRef]
  30. M. Klein and R. Schwartz, “Photorefractive effects in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305(1986). [CrossRef]
  31. N. Mori and K.-A. Chang, “mPIV-MATLAB PIV Toolbox.”
  32. N. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2006).
  33. R. F. Probstein, Physicochemical Hydrodynamics (Wiley, 1994). [CrossRef]
  34. Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998). [CrossRef]
  35. D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70, 4974–4984 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited