OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media

Dmitry Yudovsky and Laurent Pilon  »View Author Affiliations


Applied Optics, Vol. 49, Issue 31, pp. 6072-6084 (2010)
http://dx.doi.org/10.1364/AO.49.006072


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present computationally efficient and accurate semiempirical models of light transfer for real-time analysis of multilayer fluorescing media exposed to normally incident excitation light. The model accounts for absorption and strong forward scattering as well as for internal reflection at the interface between the medium and the surrounding air. The absorption and scattering coefficients are assumed to be constant with depth; the fluorophore concentration is considered piecewise constant. The refractive index ranges from 1.0 to 2.0, and the transport single scattering albedo between 0.50 and 0.99. First, simple analytical expressions for local excitation fluence rate within the medium and surface fluorescence intensity emerging from its surface were derived from the two-flux approximation. Then, parameters appearing in the analytical expression previously derived were fitted to match results from more accurate Monte Carlo simulations. A single semiempirical parameter was sufficient to relate the diffuse reflectance of the medium at the excitation wavelength to the local excitation fluence rate within the medium and to the surface fluorescence emission intensity. The model predictions were compared with Monte Carlo simulations for local fluence rate and total surface fluorescence emission from (i) homogeneous semi-infinite fluorescing media, (ii) media with a semi-infinite fluorescing layer beneath a nonfluorescing layer, and (iii) media with a finite fluorescing layer embedded in a nonfluorescing semi-infinite layer. The model predictions of the local excitation fluence rate and of the total surface fluorescence emission fell to within 5% of predictions by Monte Carlo simulations for single scattering albedo greater than 0.90. The current model can be used for a wide range of applications, including noninvasive diagnosis of biological tissue.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(110.7050) Imaging systems : Turbid media
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(230.4170) Optical devices : Multilayers
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 2, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: August 22, 2010
Published: October 26, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Dmitry Yudovsky and Laurent Pilon, "Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media," Appl. Opt. 49, 6072-6084 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-49-31-6072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Mycek and B. W. Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker, 2003).
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic, 1999).
  3. N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002). [CrossRef]
  4. I. Georgakoudi, B. C. Jacobson, M. G. Mu¨ller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, and J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002). [PubMed]
  5. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, and G. A. Thomas, L. T. Perelman, and M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120, 1620–1629 (2001). [CrossRef] [PubMed]
  6. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997). [CrossRef] [PubMed]
  7. K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,” Appl. Opt. 45, 4174–4183 (2006). [CrossRef] [PubMed]
  8. M. E. Ramos and M. G. Lagorio, “True fluorescence spectra of leaves,” Photochem. Photobiol. Sci. 3, 1063–1066 (2004). [CrossRef] [PubMed]
  9. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004). [CrossRef] [PubMed]
  10. S. A. French, P. R. Territo, and R. S. Balaban, “Correction for inner filter effects in turbid samples: fluorescence assays of mitochondrial NADH,” Am. J. Physiol. Cell Physiol. 275, C900–C909 (1998).
  11. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  12. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996). [CrossRef] [PubMed]
  13. J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31, 1949–1959 (2004). [CrossRef] [PubMed]
  14. N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3, 171–186 (1998). [CrossRef]
  15. T. Shakespeare and J. Shakespeare, “A fluorescent extension to the Kubelka–Munk model,” Color Res. Appl. 28, 4–14 (2003). [CrossRef]
  16. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994). [CrossRef] [PubMed]
  17. W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka–Munk theory,” Appl. Opt. 36, 5580–5586 (1997). [CrossRef] [PubMed]
  18. G. Yoon, S. A. Prahl, and A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989). [CrossRef] [PubMed]
  19. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  20. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005). [CrossRef] [PubMed]
  21. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005). [CrossRef] [PubMed]
  22. Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy reveals layered structure of tissue,” Opt. Express 12, 3218–3223 (2004). [CrossRef] [PubMed]
  23. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9, 511–522 (2004). [CrossRef] [PubMed]
  24. R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. W. Greaves, and D. P. Bua, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Res. 16, 602–607 (1995). [CrossRef]
  25. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000). [CrossRef] [PubMed]
  26. D. A. Hansen, A. M. Spence, T. Carski, and M. S. Berger, “Indocyanine green (ICG) staining and demarcation of tumor margins in a rat glioma model,” Surg. Neurol. 40, 451–456(1993). [CrossRef] [PubMed]
  27. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  28. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Ann. Astrophys. 93, 70–83 (1940).
  29. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2007).
  30. M. J. C. Van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154(1989). [CrossRef] [PubMed]
  31. S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  32. D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, “Physically based modeling and animation of fire,” in Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (ACM New York, 2002), pp. 721–728.
  33. S. Chandrasekhar, Radiative Transfer ( Dover, 1960).
  34. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  35. P. Kubelka and F. Munk, “A contribution to the optics of pigments,” Z. Tech. Phys. 12, 593–599 (1931).
  36. M. J. C. van Gemert and W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).
  37. A. Gershun, “Fresnel reflection of diffusely incident light,” J. Opt. Soc. Am. 35, 162–162 (1945). [CrossRef]
  38. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896–1900 (2009). [CrossRef]
  39. T. H. Morton, “Fluorescent brightening agents on textiles: elementary optical theory and its practical applications,” J. Soc. Dyers Colour. 79, 238–242 (1963). [CrossRef]
  40. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  41. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta–Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  42. D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48, 6670–6683 (2009). [CrossRef] [PubMed]
  43. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981). [CrossRef] [PubMed]
  44. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006). [CrossRef]
  45. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998). [CrossRef] [PubMed]
  46. L. Wang, S. L. Jacques, and L. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141–150 (1997). [CrossRef]
  47. L. Wang and S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” last accessed 3/31/2009, http://labs.seas.wustl.edu/bme/Wang/mcr5/Mcman.pdf.
  48. K. J. Daniel, N. M. Laurendeau, and F. P. Incropera, “Prediction of radiation absorption and scattering in turbid water bodies,” ASME J. Heat Transfer 101, 63–67 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited