OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Ophthalmic wavefront measurements using a versatile pyramid sensor

Elizabeth M. Daly and Chris Dainty  »View Author Affiliations

Applied Optics, Vol. 49, Issue 31, pp. G67-G77 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the operation of a pyramid wavefront sensor used to measure and correct aberrations of the human eye. The system is designed for maximum speed when running in closed loop but can also provide calibrated open-loop measurements of aberrations with a range of sampling options. A detailed characterization of the system was performed to ensure measurement accuracy. Ocular aberrations after correction had root-mean-square errors consistently less than 0.1 μm over a 6 mm pupil for all subjects tested. The system frame rate is 83 Hz in both open- and closed-loop modes.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Wavefront Sensors

Original Manuscript: January 26, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: June 19, 2010
Published: July 15, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Elizabeth M. Daly and Chris Dainty, "Ophthalmic wavefront measurements using a versatile pyramid sensor," Appl. Opt. 49, G67-G77 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  2. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [PubMed]
  3. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  4. B. Platt and R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1994).
  5. J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  6. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43, 289–293 (1996). [CrossRef]
  7. A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, “On sky test of the pyramid wavefront sensor,” Proc. SPIE 4839, 869–877 (2003). [CrossRef]
  8. L. M. Foucault, “Mémoire sur la construction des télescopes en verre arganté,” Ann. Obs. Imp. Paris 5, 197–237 (1859).
  9. R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208, 51–60 (2002). [CrossRef]
  10. J. LeDue, L. Jolissaint, J.-P. Véran, and C. Bradley, “Calibration and testing with real turbulence of a pyramid sensor employing static modulation,” Opt. Express 17, 7186–7195(2009). [CrossRef] [PubMed]
  11. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express 10, 419–428 (2002). [PubMed]
  12. J. B. Costa, R. Ragazzoni, A. Ghedina, M. Carbillet, C. Verinaud, M. Feldy, S. Esposito, E. Puga, and J. Farinato, “Is there need of any modulation in the pyramid wavefront sensor,” Proc. SPIE 4839, 288–298 (2003). [CrossRef]
  13. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef] [PubMed]
  14. R. Ragazzoni and J. Farinato, “Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics,” Astron. Astrophys. 350, L23–L26 (1999).
  15. S. Esposito and A. Riccardi, “Pyramid wavefront sensor behaviour in partial correction adaptive optic systems,” Astron. Astrophys. 369, L9–L12 (2001). [CrossRef]
  16. A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, “Laboratory characterization of a “Foucault-like” wavefront sensor for adaptive optics,” Proc. SPIE 3353, 941–951 (1998). [CrossRef]
  17. A. Burvall, E. Daly, S. R. Chamot, and C. Dainty, “Linearity of the pyramid wavefront sensor,” Opt. Express 14, 11925–11934(2006). [CrossRef] [PubMed]
  18. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, E. Daly, and C. Dainty, “The correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47, 6550–6561(2008). [CrossRef] [PubMed]
  19. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiolog. Opt. 22, 427–433 (2002). [CrossRef]
  20. O. Feeney, “Theory and laboratory characterization of a novel wavefront sensor for adaptive optics,” PhD thesis (National University of Ireland, Galway, 2001).
  21. S. Esposito, O. Feeney, and A. Riccardi, “Laboratory test of a pyramid wavefront sensor,” Proc. SPIE 4007, 416–422 (2000). [CrossRef]
  22. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69, 972–977 (1979). [CrossRef]
  23. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–635 (2001). [CrossRef] [PubMed]
  24. P. Rodríguez, R. Navarro, J. Arines, and S. Bará, “A new calibration set of phase plates for ocular aberrometers,” J. Refractive Surg. 22, 275–284 (2006).
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of Trends in Optics and Photonics Series, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 233–244.
  26. British-Adopted European Standard BS EN 60825-1:2007 Safety of Laser Products- Part 1: Equipment Classification and Requirements (British Standards Institution, 2009). [PubMed]
  27. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  28. J. D. Scargle, “Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data,” Astrophys. J. 263, 835–853 (1982). [CrossRef]
  29. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberrations,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  30. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited