OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Approximate analytical scattering phase function dependent on microphysical characteristics of dust particles

Miroslav Kocifaj  »View Author Affiliations


Applied Optics, Vol. 50, Issue 17, pp. 2493-2499 (2011)
http://dx.doi.org/10.1364/AO.50.002493


View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The approximate bulk-scattering phase function of a polydisperse system of dust particles is derived in an analytical form. In the theoretical solution, the particle size distribution is modeled by a modified gamma function that can satisfy various media differing in modal radii. Unlike the frequently applied power law, the modified gamma distribution shows no singularity when the particle radius approaches zero. The approximate scattering phase function is related to the parameters of the size distribution function. This is an important advantage compared to the empirical Henyey–Greenstein (HG) approximation, which is a simple function of the average cosine. However, any optimized value of average cosine of the HG function cannot provide the information on particle microphysical characteristics, such as the size distribution function. In this paper, the mapping between average cosine and the parameters of size distribution function is given by a semianalytical expression that is applicable in rapid numerical simulations on various dust populations. In particular, the modal radius and half-width can be quickly estimated using the presented formulas.

© 2011 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(290.0290) Scattering : Scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 25, 2011
Manuscript Accepted: March 22, 2011
Published: June 1, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Miroslav Kocifaj, "Approximate analytical scattering phase function dependent on microphysical characteristics of dust particles," Appl. Opt. 50, 2493-2499 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-17-2493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Mishchenko, “Asymmetry parameters of the phase function for densely packed scattering grains,” J. Quant. Spectrosc. Radiat. Transfer 52, 95–110 (1994). [CrossRef]
  2. M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by MARCI,” Icarus 208, 143–155 (2010). [CrossRef]
  3. M. Vincendon, Y. Langevin, F. Poulet, J. P. Bibring, B. Gondet, D. Jouglet, and OMEGA Team, “Dust aerosols above the south polar cap of Mars as seen by OMEGA,” Icarus 196, 488–505 (2008). [CrossRef]
  4. A. Jehl, P. Pinet, D. Baratoux, Y. Daydou, S. Chevrel, F. Heuripeau, N. Manaud, A. Cord, C. Rosemberg, G. Neukum, K. Gwinner, F. Scholten, H. Hoffman, T. Roatsch, and HRSC Team, “Gusev photometric variability as seen from orbit by HRSC/Mars-express,” Icarus 197, 403–428 (2008). [CrossRef]
  5. Z. M. Dlugach and A. V. Morozhenko, “Parameters of dust particles in the Martian atmosphere,” Solar System Research 35, 421–430 (2001). [CrossRef]
  6. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
  7. A. Määttänen, H. Vehkamäki, A. Lauri, S. Merikallio, J. Kauhanen, H. Savijärvi, and M. Kulmala, “Nucleation studies in the Martian atmosphere,” J. Geophys. Res. 110, E02002 (2005). [CrossRef]
  8. M. Vincendon and Y. Langevin, “A spherical Monte Carlo model of aerosols: validation and first applications to Mars and Titan,” Icarus 207, 923–931 (2010). [CrossRef]
  9. B. Hartman and D. Domingue, “Scattering of light by individual particles and the implications for models of planetary surfaces,” Icarus 131, 421–448 (1998). [CrossRef]
  10. K. Bohren and D. Hufmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  11. S. K. Sharma and A. K. Roy, “New approximate phase functions: test for nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 64, 327–337 (2000). [CrossRef]
  12. J. Warell, “Properties of the Herman regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling,” Icarus 167, 271–286 (2004). [CrossRef]
  13. B. J. Buratti, C. Sotin, R. H. Brown, M. D. Hicks, R. N. Clark, J. A. Mosher, T. B. McCord, R. Jaumann, K. H. Baines, P. D. Nicholson, T. Momary, D. P. Simonelli, and B. Sicardy, “Titan: preliminary results on surface properties and photometry from VIMS observations of the early flybys,” Planet. Space Sci. 54, 1498–1509 (2006). [CrossRef]
  14. J. Y. Li, M. F. A’Hearn, J. S. Belton, C. J. Crockett, T. L. Farnham, C. M. Lisse, L. A. McFadden, K. J. Meech, J. M. Sunshine, P. C. Thomas, and J. Veverka, “Deep impact photometry of comet 9P/Temel 1,” Icarus 187, 41–55 (2007). [CrossRef]
  15. M. Ádámkovics, J. W. Barnes, M. Hartung, and I. de Pater, “Observations of a stationary mid-latitude cloud system on Titan,” Icarus 208, 868–877 (2010). [CrossRef]
  16. S. L. Gratiy, D. A. Levin, and A. C. Walker, “Rassvet: backward Monte Carlo radiative transfer in spherical-shell planetary atmospheres,” Icarus 206, 366–379 (2010). [CrossRef]
  17. N. V. Sujatha, J. Murthy, A. Karnataki, R. C. Henry, and L. Bianchi, “GALEX observations of diffuse UV radiation at high spatial resolution from the Sandage nebulosity,” Astrophys. J. 692, 1333–1338 (2009). [CrossRef]
  18. A. Goobar, “Low Rv from circumstellar dust around supernovae,” Astrophys. J. 686, L103–L106 (2008). [CrossRef]
  19. M. Caldas and V. Semião, “A new approximate phase function for isolated particles and polydispersions,” J. Quant. Spectrosc. Radiat. Transfer 68, 521–542 (2001). [CrossRef]
  20. M. A. Box and A. Deepak, “Retrieval of aerosol size distributions by inversion of simulated aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382(1979). [CrossRef] [PubMed]
  21. A. A. Lacis and M. I. Mishchenko, “Climate forcing, climate sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols,” in Aerosol Forcing of Climate, R.L.Charlson and J.Heintzenberg, eds. (Wiley, 1994).
  22. K. S. Shifrin, “The study of the properties of matter from single scattering,” in Theoretical and Applied Problems of Light Scattering (Nauka i Tekhnika, 1971), pp. 228–244.
  23. N. C. Wickramasinghe and F. Hoyle, “Very small dust particles (Vsdps) in comet C/1996 B2 (Hyakutake),” Astrophys. Space Sci. 239, 121–123 (1996). [CrossRef]
  24. C. M. Sorensen and D. J. Fischbach, “Patterns in Mie scattering,” Opt. Commun. 173, 145–153 (2000). [CrossRef]
  25. R. Greeley, G. Wilson, R. Coquilla, B. White, and R. Haberle, “Windblown dust on Mars: laboratory simulations on flux as a function of surface roughness,” Planet. Space Sci. 48, 1349–1355 (2000). [CrossRef]
  26. B. T. Draine and P. J. Flatau, “User Guide to the Discrete Dipole Approximation Code DDSCAT7.1,” http://arXiv.org/abs/1002.1505v1 (2007).
  27. H. Horvath, M. Kasahara, S. Tohno, and M. Kocifaj, “Angular scattering of the Gobi Desert aerosol and its influence on radiative forcing,” J. Aerosol Sci. 37, 1287–1302 (2006). [CrossRef]
  28. M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretennikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of the Maritime Smokes (Nauka, 1988) (In Russian).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited