OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance

Zhong Ping Lee, Keping Du, Kenneth J. Voss, Giuseppe Zibordi, Bertrand Lubac, Robert Arnone, and Alan Weidemann  »View Author Affiliations


Applied Optics, Vol. 50, Issue 19, pp. 3155-3167 (2011)
http://dx.doi.org/10.1364/AO.50.003155


View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Remote-sensing reflectance ( R rs ), which is defined as the ratio of water-leaving radiance ( L w ) to downwelling irradiance just above the surface ( E d ( 0 + ) ), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L w is commonly measured in the field or by satellite sensors at convenient angles, while E d ( 0 + ) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of R rs (or L w ) resulting from a change of water constituents, the angular effects of R rs (or L w ) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water’s inherent optical properties (IOPs). It can be used to derive IOPs from angular R rs and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular R rs to retrieve IOPs and to remove the angular variation of R rs .

© 2011 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 12, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: April 6, 2011
Published: June 22, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Zhong Ping Lee, Keping Du, Kenneth J. Voss, Giuseppe Zibordi, Bertrand Lubac, Robert Arnone, and Alan Weidemann, "An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance," Appl. Opt. 50, 3155-3167 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-19-3155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (2): bi-directional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  2. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  3. H. R. Gordon and K. J. Voss, “Normalized water-leaving radiance,” Tech. Rep. (National Aeronautics and Space Administration, 1999).
  4. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters, III, implications of bi-directionality for the remote sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  5. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002). [CrossRef] [PubMed]
  6. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanog. 22, 709–722 (1977). [CrossRef]
  7. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248 (2005). [CrossRef] [PubMed]
  8. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  9. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  10. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983), p. 44.
  11. International Ocean Colour Coordinating Group, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No. 3, S.Sathyendranath, ed. (International Ocean Colour Coordinating Group, Dartmouth, Canada, 2000).
  12. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180(2001). [CrossRef]
  13. K. J. Voss, A. Morel, and D. Antoine, “Detailed validation of the bidirectional effect in various case 1 waters for application to ocean color imagery,” Biogeosciences 4, 781–789(2007). [CrossRef]
  14. A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?,” J. Geophys. Res. 114, C01016 (2009). [CrossRef]
  15. Z. P. Lee and C. Hu, “Global distribution of case-1 waters: an analysis from SeaWiFS measurements,” Remote Sens. Environ. 101, 270–276 (2006). [CrossRef]
  16. C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanog. 48, 337–345 (2003). [CrossRef]
  17. R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988). [CrossRef] [PubMed]
  18. C. Hu and K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36, 6962–6967 (1997). [CrossRef]
  19. H. R. Gordon, K. J. Voss, and K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanog. 38, 1582–1586 (1993). [CrossRef]
  20. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  21. J. R. V. Zaneveld, “Remote sensed reflectance and its dependence on vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982). [CrossRef] [PubMed]
  22. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995). [CrossRef]
  23. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427(1975). [CrossRef] [PubMed]
  24. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924(1988). [CrossRef]
  25. H. R. Gordon, “Modeling and simulating radiative transfer in the ocean,” in Ocean Optics, R.W.Spinrad, K.L.Carder, and M.J.Perry, eds. (Oxford University, 1994).
  26. N. K. Hojerslev, “Analytic remote-sensing optical algorithms requiring simple and practical field parameter inputs,” Appl. Opt. 40, 4870–4874 (2001). [CrossRef]
  27. T. Hirata, N. Hardman-Mountford, J. Aiken, and J. Fishwick, “Relationship between the distribution function of ocean nadir radiance and inherent optical properties for oceanic waters,” Appl. Opt. 48, 3130–3139 (2009). [CrossRef]
  28. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050(2002). [CrossRef] [PubMed]
  29. T. J. Petzold, “Volume scattering functions for selected natural waters,” Scripps Inst. Oceanog. 72–78 (1972).
  30. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003). [CrossRef]
  31. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009). [CrossRef] [PubMed]
  32. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanog. 29, 350–356 (1984). [CrossRef]
  33. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanog. 34, 1389–1409 (1989). [CrossRef]
  34. E. Åas, “Two stream irradiance model for deep waters,” Appl. Opt. 26, 2095–2101 (1987). [CrossRef] [PubMed]
  35. Z. P. Lee, K. P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016, (2005). [CrossRef]
  36. A. Albert and C. D. Mobley, “An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters,” Opt. Express 11, 2873–2890 (2003). [CrossRef] [PubMed]
  37. S. Sathyendranath and T. Platt, “Analytic model of ocean color,” Appl. Opt. 36, 2620–2629 (1997). [CrossRef] [PubMed]
  38. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “A model for interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  39. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957–4964 (2004). [CrossRef] [PubMed]
  40. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005). [CrossRef] [PubMed]
  41. H. J. V. D. Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008). [CrossRef]
  42. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  43. International Ocean Colour Coordinating Group, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P.Lee, ed. (International Ocean Colour Coordinating Group, Dartmouth, Canada, 2006), p. 126.
  44. G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” in Ocean Optics XII, J.S.Jaffe, eds. (SPIE, 1994), pp. 194–201
  45. C. D. Mobley, Hydrolight 3.0 Users’ Guide (SRI, 1995).
  46. Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef] [PubMed]
  47. Z.-P. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010). [CrossRef] [PubMed]
  48. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef] [PubMed]
  49. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef] [PubMed]
  50. E. Devred, S. Sathyendranath, and T. Platt, “Inversion based on a semi-analytical reflectance model,” in Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications, Z.-P.Lee, ed. (GKSS, 2006), p. 87–94.
  51. K. J. Voss and A. L. Chapin, “Upwelling radiance distribution camera system, NURADS,” Opt. Express 13, 4250–4262(2005). [CrossRef] [PubMed]
  52. K. J. Voss and N. Souaidia, “POLRADS: polarization radiance distribution measurement system,” Opt. Express 18, 19672–19680 (2010). [CrossRef] [PubMed]
  53. B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110, 45–58 (2007). [CrossRef]
  54. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  55. Z.-P. Lee, Y.-H. Ahn, C. Mobley, and R. Arnone, “Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express 18, 26313–26342 (2010). [CrossRef] [PubMed]
  56. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007). [CrossRef]
  57. J. E. O’ReillyS. Maritorena, D. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, andM. Culver, “SeaWiFS postlaunch calibration and validation analyses, part 3,” in SeaWiFS Postlaunch Technical Report Series, S.B.Hooker and E.R.Firestone, eds. (NASA, 2000), p. 58.
  58. H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22, 275–295 (2001). [CrossRef]
  59. H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanog. 37, 491–500 (1992). [CrossRef]
  60. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 43, 401–415 (2004). [CrossRef]
  61. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009). [CrossRef]
  62. G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073(2004). [CrossRef]
  63. G. Zibordi, J.-F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009). [CrossRef]
  64. J.-F. Berthon and G. Zibordi, “Bio-optical relationships for the northern Adriatic Sea,” Int. J. Remote Sens. 25, 1527–1532(2004). [CrossRef]
  65. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” EOS Trans. AGU 87, 297–298 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited