OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Evaluation of a compact sensor for backscattering and absorption

Alina Gainusa Bogdan and Emmanuel S. Boss  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 3758-3772 (2011)
http://dx.doi.org/10.1364/AO.50.003758


View Full Text Article

Enhanced HTML    Acrobat PDF (1792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Seawater inherent optical properties (IOPs) are key parameters in a wide range of applications in environmental studies and oceanographic research. In particular, the absorption coefficient (a) is the typical IOP used to obtain the concentration of chlorophyll-a in the water—a critical parameter in biological oceanography studies and the backscattering coefficient ( b b ) is used as a measure of turbidity. In this study, we test a novel instrument concept designed to obtain both the absorption and backscattering coefficients. The instrument would emit a collimated monochromatic light beam into the water retrieving the backscattered light intensity as a function of distance from the center of illumination. We use Monte Carlo modeling of light propagation to create an inversion algorithm that translates the signal from such an instrument into values of a and b b . Our results, based on simulations spanning the bulk of natural values of seawater IOP combinations, indicate that a 6.2 cm diameter instrument with a radial resolution of 1 cm would be capable of predicting b b within less than 13.4% relative difference and a within less than 57% relative difference (for 90% of the inverted a values, the relative errors fall below 29.7%). Additionally, these errors could be further reduced by constraining the inversion algorithm with information from concurrent measurements of other IOPs. Such a compact and relatively simple device could have multiple applications for in situ optical measurements, including a and b b retrievals from instrumentation mounted on autonomous underwater vehicles. Furthermore, the same methodology could possibly be used for an out-of-water sensor.

© 2011 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1030) Atmospheric and oceanic optics : Absorption
(010.1350) Atmospheric and oceanic optics : Backscattering
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 7, 2010
Revised Manuscript: March 20, 2011
Manuscript Accepted: April 24, 2011
Published: July 11, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Alina Gainusa Bogdan and Emmanuel S. Boss, "Evaluation of a compact sensor for backscattering and absorption," Appl. Opt. 50, 3758-3772 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-21-3758

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited