OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Raman and fluorescent scattering matrix of spherical microparticles

Sergei N. Volkov, Ignatii V. Samokhvalov, and Dukhyeon Kim  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 4054-4062 (2011)
http://dx.doi.org/10.1364/AO.50.004054


View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we have investigated the main properties of the Raman and fluorescent matrix of scattering by microspheres using the matrix scattering formalism. The coherent and incoherent inelastic scattering of incident light by a microsphere is described by the Stokes parameters. We demonstrate the main symmetry properties of the coherent and incoherent Raman and fluorescent scattering matrices. Numerical results are presented to illustrate the Raman scattering efficiency, cross-phase coefficient, and some other parameters of scattering by microspheres.

© 2011 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(290.4020) Scattering : Mie theory
(290.5860) Scattering : Scattering, Raman
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 8, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: June 7, 2011
Published: July 15, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Sergei N. Volkov, Ignatii V. Samokhvalov, and Dukhyeon Kim, "Raman and fluorescent scattering matrix of spherical microparticles," Appl. Opt. 50, 4054-4062 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-21-4054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976). [CrossRef]
  2. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, and D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1686 (1978). [CrossRef]
  3. H. Chew, M. Sculley, M. Kerker, P. J. McNulty, and D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: results for coherent optical processes,” J. Opt. Soc. Am. 68, 1686–1689 (1978). [CrossRef]
  4. M. Kerker and S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179(1979). [CrossRef] [PubMed]
  5. H. Chew, M. Kerker, and P. J. McNulty, “Raman and fluorescent scattering by molecules embedded in concentric spheres,” J. Opt. Soc. Am. 66, 440–444 (1976). [CrossRef]
  6. H. Chew, D. D. Cooke, and M. Kerker, “Raman and fluorescent scattering by molecules embedded in dielectric cylinders,” Appl. Opt. 19, 44–52 (1980). [CrossRef] [PubMed]
  7. D.-S. Wang, M. Kerker, and H. Chew, “Raman and fluorescent scattering by molecules embedded in dielectric spheroids,” Appl. Opt. 19, 2315–2328 (1980). [CrossRef] [PubMed]
  8. S. D. Druger and P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983). [CrossRef] [PubMed]
  9. H. Chew, “Total fluorescent scattering cross section,” Phys. Rev. A 37, 4107–4110 (1988). [CrossRef] [PubMed]
  10. J. D. Pendleton and S. C. Hill, “Collection of emission from an oscillating dipole inside a sphere: analytical integration over a circular aperture,” Appl. Opt. 36, 8729–8737 (1997). [CrossRef]
  11. V. Griaznov, I. Veselovskii, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 1. General expressions,” Appl. Opt. 41, 5773–5782 (2002). [CrossRef] [PubMed]
  12. S. Lange and G. Schweiger, “Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence,” J. Opt. Soc. Am. B 13, 1864–1872 (1996). [CrossRef]
  13. I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt. 41, 5783–5791 (2002). [CrossRef] [PubMed]
  14. S. Lange and G. Schweiger, “Thermal radiation from spherical microparticles: a new dipole model,” J. Opt. Soc. Am. B 11, 2444–2451 (1994). [CrossRef]
  15. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509(1990). [CrossRef]
  16. V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys. Usp. 44, 1061–1073 (2001). [CrossRef]
  17. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y.-L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt. 40, 3005–3013 (2001). [CrossRef]
  18. M. L. Laucks, F. Zheng, and E. J. Davis, “Resonance Raman scattering from single levitated microparticles,” Appl. Spectrosc. 56, 1436–1443 (2002). [CrossRef]
  19. T. Weigel, J. Schulte, and G. Schweiger, “Inelastic scattering on particles with inclusions,” J. Opt. Soc. Am. A 22, 1048–1052(2005). [CrossRef]
  20. T. Weigel, J. Schulte, and G. Schweiger, “Inelastic scattering by particles of arbitrary shape,” J. Opt. Soc. Am. A 23, 2797–2802 (2006). [CrossRef]
  21. T. Weigel, J. Schulte, and G. Schweiger, “Nonlinear processes in microdroplets: a geometrical optics approach,” J. Opt. Soc. Am. B 23, 289–293 (2006). [CrossRef]
  22. S. Potgieter-Vermaak and R. V. Grieken, “Preliminary evaluation of micro-Raman spectrometry for the characterization of individual aerosol particles,” Appl. Spectrosc. 60, 39–47(2006). [CrossRef] [PubMed]
  23. Y. Hu, H. Wikström, S. R. Byrn, and L. S. Taylor, “Analysis of the effect of particle size on polymorphic quantitation by Raman spectroscopy,” Appl. Spectrosc. 60, 977–984 (2006). [CrossRef] [PubMed]
  24. K. A. Esmonde-White, S. V. LeClair, B. J. Roessler, and M. D. Morris, “Effect of conformation and drop properties on surface-enhanced Raman spectroscopy of dried biopolymer drops,” Appl. Spectrosc. 62, 503–511 (2008). [CrossRef] [PubMed]
  25. A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110–115 (2008). [CrossRef] [PubMed]
  26. H. C. Huang, Y.-L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles,” Opt. Express 16, 16523–16528 (2008). [CrossRef] [PubMed]
  27. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48, D109–D120 (2009). [CrossRef] [PubMed]
  28. A. Braeuer, S. Dowy, and A. Leipertz, “Simultaneous Raman and elastic light scattering imaging for particle formation investigation,” Opt. Lett. 35, 2553–2555 (2010). [CrossRef] [PubMed]
  29. B. Moody, C. M. Haslauer, E. Kirk, A. Kannan, E. G. Loboa, and G. S. McCarty, “In situ monitoring of adipogenesis with human-adipose-derived stem cells using surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 64, 1227–1233 (2010). [CrossRef] [PubMed]
  30. M. Putkiranta, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen, “Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions,” Appl. Phys. B 99, 841–851 (2010). [CrossRef]
  31. Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010). [CrossRef] [PubMed]
  32. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082(1992). [CrossRef] [PubMed]
  33. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559(1997). [CrossRef] [PubMed]
  34. D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419(1999). [CrossRef]
  35. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in troposphere,” Appl. Phys. B 71, 113–117(2000). [CrossRef]
  36. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic–Raman depolarization lidar,” Appl. Phys. B 73, 739–744 (2001). [CrossRef]
  37. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  38. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003). [CrossRef] [PubMed]
  39. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003). [CrossRef] [PubMed]
  40. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman lidar observations of cloud liquid water,” Appl. Opt. 43, 6440–6453(2004). [CrossRef] [PubMed]
  41. I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005). [CrossRef] [PubMed]
  42. D. Kim and H. Cha, “Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar,” Opt. Lett. 31, 2915–2917 (2006). [CrossRef] [PubMed]
  43. A. V. Malinka and E. P. Zege, “Possibilities of warm cloud microstructure profiling with multiple-field-of-view Raman lidar,” Appl. Opt. 46, 8419–8427 (2007). [CrossRef] [PubMed]
  44. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, M. Hu, and Y. Zhang, “Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China,” Appl. Opt. 46, 6302–6308 (2007). [CrossRef] [PubMed]
  45. Y. Wu, S. Chaw, B. Gross, F. Moshary, and S. Ahmed, “Low and optically thin cloud measurements using a Raman-Mie lidar,” Appl. Opt. 48, 1218–1227 (2009). [CrossRef]
  46. C.-B. Xie, J. Zhou, N. Sugimoto, and Z.-F. Wang, “Aerosol observation with Raman LIDAR in Beijing, China,” J. Opt. Soc. Korea 14, 215–220 (2010). [CrossRef]
  47. D. Kim, I. Song, H. D. Cheong, Y. Kim, S. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman LIDAR signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010). [CrossRef]
  48. S.-H. Park, Y.-G. Kim, D.-H. Kim, H.-D. Cheong, W.-S. Choi, and J.-I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010). [CrossRef]
  49. Y.-L. Xu, “Scattering Mueller matrix of an ensemble of variously shaped small particles,” J. Opt. Soc. Am. A 20, 2093–2105 (2003). [CrossRef]
  50. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  51. H. C. van der Hulst, Light Scattering by Small Particles(Dover, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited