OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

High-resolution retinal imaging with micro adaptive optics system

Saisai Niu, Jianxin Shen, Chun Liang, Yunhai Zhang, and Bangming Li  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4365-4375 (2011)
http://dx.doi.org/10.1364/AO.50.004365


View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann–Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6 LP / mm , and the human eye wavefront aberration of 0.728 λ ( λ = 785 nm ) can be corrected to 0.081 λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.

© 2011 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(110.1085) Imaging systems : Adaptive imaging
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: May 3, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 15, 2011
Published: July 27, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Saisai Niu, Jianxin Shen, Chun Liang, Yunhai Zhang, and Bangming Li, "High-resolution retinal imaging with micro adaptive optics system," Appl. Opt. 50, 4365-4375 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-22-4365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. J. Z. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  3. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  4. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2891 (1997). [CrossRef]
  5. L. J. Zhu, P. C. Sun, D. U. Bartsch, R. F. Williams, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999). [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Performance of the Rochester 2nd generation adaptive optics system for the eye,” Opt. Express 8, 631–643(2001). [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. W. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412(2002). [PubMed]
  8. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  9. N. Ling, Y. D. Zhang, X. J. Rao, C. Wang, Y. Y. Hu, and W. H. Jiang, “High resolution mosaic image of capillaries of human retina by adaptive optics,” Chin. Opt. Lett. 3, 225–226(2005).
  10. R. J. Zawadzki, S. M. Jones, S. S. Choi, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [CrossRef] [PubMed]
  11. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics—optical coherence tomography,” Opt. Express 17, 4084–4094 (2009). [CrossRef] [PubMed]
  12. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18, 11607–11621 (2010). [CrossRef] [PubMed]
  13. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express 18, 1406–1418 (2010). [CrossRef] [PubMed]
  14. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18, 8515–8527 (2010). [CrossRef] [PubMed]
  15. S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009). [CrossRef]
  16. M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999). [CrossRef]
  17. B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009). [CrossRef]
  18. R. Z. Zhou, “Correction mode adaptive optics system,” in Adaptive Optics (Academic, 1996), pp. 270–301.
  19. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  20. H. J. Caulfield, J. Shamir, J. E. Ludman, and P. Greguss, “Reversibility and energetics in optical computing,” Opt. Lett. 15, 912–914 (1990). [CrossRef] [PubMed]
  21. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  22. S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007). [CrossRef]
  23. X. M. Yin, X. Li, L. P. Zhao, and Z. P. Fang, “Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack–Hartmann wavefront sensor,” Appl. Opt. 48, 6088–6098 (2009). [CrossRef] [PubMed]
  24. C. Liang, Research on Technology of Wavefront Reconstruction for Human Retina Cell Imaging (Academic, 2009).
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).
  26. X. Y. Li, Optimization of Modal Reconstruction Algorithm and Control Algorithm in Adaptive Optics System (Academic, 2000).
  27. N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009). [CrossRef]
  28. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003). [CrossRef] [PubMed]
  29. D. Ferrario and F. Wildi, “Nulling interferometry and adaptive optics control system optimization,” Proc. SPIE 5905, 237–248(2005). [CrossRef]
  30. R. C. Flicker and F. J. Rigaut, “Anisoplanatic deconvolution of adaptive optics images,” J. Opt. Soc. Am. A 22, 504–513 (2005). [CrossRef]
  31. G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited