OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Coding for compressive focal tomography

David J. Brady and Daniel L. Marks  »View Author Affiliations

Applied Optics, Vol. 50, Issue 22, pp. 4436-4449 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the capabilities and limits of strategies for single-aperture three-dimensional and extended depth of field optical imaging. We show that reduced spatial resolution is implicit in forward models for light field sampling and that reduced modulation transfer efficiency is intrinsic to pupil coding. We propose a novel strategy based on image space modulation and show that this strategy can be sensitive to high-resolution spatial features across an extended focal volume.

© 2011 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.1758) Imaging systems : Computational imaging
(110.6955) Imaging systems : Tomographic imaging
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Imaging Systems

Original Manuscript: March 8, 2011
Revised Manuscript: June 17, 2011
Manuscript Accepted: June 18, 2011
Published: July 27, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

David J. Brady and Daniel L. Marks, "Coding for compressive focal tomography," Appl. Opt. 50, 4436-4449 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Brady, Optical Imaging and Spectroscopy (Wiley and Optical Society of America, 2009). [CrossRef]
  2. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001). [CrossRef]
  3. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003). [CrossRef] [PubMed]
  4. D. J. Brady, N. Pitsianis, X. Sun, and P. Potuluri, “Compressive sampling and signal inference,” U.S. Patents 7283231, 7432843, 7463179, 7616306, 7463174 and 7427932 (filed 19 July 2005 and issued 16 October 2007).
  5. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006). [CrossRef]
  6. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  7. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027(2007). [CrossRef] [PubMed]
  8. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008). [CrossRef] [PubMed]
  9. E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008). [CrossRef] [PubMed]
  10. G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008). [CrossRef] [PubMed]
  11. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049(2009). [CrossRef] [PubMed]
  12. A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010). [CrossRef]
  13. D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002). [CrossRef]
  14. E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005). [CrossRef]
  15. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006). [CrossRef]
  16. M. F. Duarte, D. Takhar, J. N. Laska, T. Sun, P. Boufounos, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging using compressive sensing,” presented at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2008 Show and Tell, Las Vegas, Nevada, USA, 30 March–4 April 2008, URL: http://www.icassp2008.org/ShowAndTell.asp.
  17. P. K. Baheti and M. A. Neifeld, “Feature-specific structured imaging,” Appl. Opt. 45, 7382–7391 (2006). [CrossRef] [PubMed]
  18. P. K. Baheti and M. A. Neifeld, “Random projections based feature-specific structured imaging,” Opt. Express 16, 1764–1776 (2008). [CrossRef] [PubMed]
  19. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask-enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Transactions on Graphics 26, 69 (2007). [CrossRef]
  20. C. K. Liang, T. H. Lin, B. Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” ACM Trans. Graph. 27, 55 (2008). [CrossRef]
  21. E. R. Dowski and W. T. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866(1995). [CrossRef] [PubMed]
  22. J. R. Fienup, “MTF and integration time versus fill factor for sparse-aperture imaging systems,” Proc. SPIE 4091, 43–47(2000). [CrossRef]
  23. D. J. Brady, A. Mrozack, and K. Choi, “Sparse aperture coding for compressive sampling,” Proc. SPIE 7818, 78180D(2010). [CrossRef]
  24. D. J. Brady, N. P. Pitsianis, and X. B. Sun, “Reference structure tomography,” J. Opt. Soc. Am. A 21, 1140–1147 (2004). [CrossRef]
  25. P. Potuluri, U. Gopinathan, J. R. Adleman, and D. J. Brady, “Lensless sensor system using a reference structure,” Opt. Express 11, 965–974 (2003). [CrossRef] [PubMed]
  26. P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003). [CrossRef] [PubMed]
  27. D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the fresnel domain,” Appl. Opt. 38, 1332–1342 (1999). [CrossRef]
  28. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999). [CrossRef] [PubMed]
  29. A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010). [CrossRef] [PubMed]
  30. S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003). [CrossRef]
  31. Z. Zhang and M. Levoy, “Wigner distributions and how they relate to the light field,” in “IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009).
  32. E. C. Cull, D. P. Kowalski, J. B. Burchett, S. D. Feller, and D. J. Brady, “Three-dimensional imaging with the argus sensor array,” Proc. SPIE 4864, 211–222 (2002). [CrossRef]
  33. B. S. Wilburn, M. Smulski, H.-H. K. Lee, and M. A. Horowitz, “Light field video camera,” Proc. SPIE 4674, 29–36 (2001). [CrossRef]
  34. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001). [CrossRef]
  35. D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999). [CrossRef]
  36. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002). [CrossRef] [PubMed]
  37. J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983). [CrossRef] [PubMed]
  38. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960). [CrossRef]
  39. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001). [CrossRef]
  40. A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006). [CrossRef] [PubMed]
  41. S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus : A Real Aperture Imaging Approach (Springer, 1999). [CrossRef]
  42. W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996). [CrossRef]
  43. H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multifocus image reconstruction,” Proc. SPIE , 5017, 332–341 (2003). [CrossRef]
  44. S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004). [CrossRef] [PubMed]
  45. S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image and Vision Computing 26, 971–979 (2008). [CrossRef]
  46. B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010). [CrossRef]
  47. S. Hong, J. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004). [CrossRef] [PubMed]
  48. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992). [CrossRef]
  49. M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006). [CrossRef]
  50. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968). [CrossRef]
  51. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  52. A. R. FitzGerrell, E. R. Dowski, and W. T. Cathey, “Defocus transfer function for circularly symmetric pupils,” Appl. Opt. 36, 5796–5804 (1997). [CrossRef] [PubMed]
  53. O. Cossairt, C. Zhou, and S. Nayar, “Diffusion coded photography for extended depth of field,” ACM Trans. Graph. 29, 31 (2010). [CrossRef]
  54. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef] [PubMed]
  55. D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in “Imaging Systems,” OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited