OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation

Yan-en Fan, Tao Zhu, Leilei Shi, and Yun-Jiang Rao  »View Author Affiliations


Applied Optics, Vol. 50, Issue 23, pp. 4604-4610 (2011)
http://dx.doi.org/10.1364/AO.50.004604


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a refractive index (RI) sensor based on a fiber Mach–Zehnder interferometer (MZI) formed by two cascaded special long-period fiber gratings (LPFGs) with rotary refractive index modulation (RLPFGs), in which the coupling occurred between the guided mode and the high-order asymmetric cladding mode. The experimental results show that the RI sensitivity of a refractometer with an interaction length of 40 mm is up to 58.8 nm / RI in the range of 1.3344 to 1.3637, which is 3.5 times higher than that of an MZI formed by two normal LPFGs. The temperature sensitivity for the same parameters of an RLPFG-MZI is about 0.03 nm / ° C . Such a kind of high-sensitivity, easy-to-fabricate and simple-structure interferometer may find applications in the chemical or biochemical sensing fields.

© 2011 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.5715) Remote sensing and sensors : Refractivity profiles

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 1, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: June 21, 2011
Published: August 3, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yan-en Fan, Tao Zhu, Leilei Shi, and Yun-Jiang Rao, "Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation," Appl. Opt. 50, 4604-4610 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-23-4604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Kim, F. S. Shen, X. P. Chen, and A. B. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor,” Opt. Lett. 30 (22), 3000–3002 (2005). [CrossRef] [PubMed]
  2. J.-M. Gagné, M. Giroux, and J.-P. Saint-Dizier, “Refractometer associated with the Fabry–Perot spectrometer,” Appl. Opt. 12, 522–527 (1973). [CrossRef] [PubMed]
  3. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263(2008). [CrossRef] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005). [CrossRef]
  5. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006). [CrossRef] [PubMed]
  6. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426(2007). [CrossRef] [PubMed]
  7. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004). [CrossRef]
  8. G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001). [CrossRef]
  9. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett. 30, 2363–2365(2005). [CrossRef] [PubMed]
  10. T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005). [CrossRef]
  11. A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long-period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007). [CrossRef] [PubMed]
  12. A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010). [CrossRef]
  13. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long-period gratings,” Opt. Express 14, 19–34 (2006). [CrossRef] [PubMed]
  14. J. Yang, L. Yang, C.-Q. Xu, and Y. Li, “Optimization of cladding-structure-modified long-period-grating refractive-index sensors,” J. Lightwave Technol. 25, 372–380 (2007). [CrossRef]
  15. S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001). [CrossRef]
  16. K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000). [CrossRef]
  17. L. Rindor, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006). [CrossRef]
  18. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005). [CrossRef]
  19. T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2laser in twisted single-mode fibers,” J. Lightwave Technol. 27, 4863–4869 (2009). [CrossRef]
  20. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38, 3450–3459 (1999). [CrossRef]
  21. K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004). [CrossRef] [PubMed]
  22. E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited