OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Finite conjugate embedded relay lens hyperspectral imaging system (ERL-HIS)

Yao-Fang Hsieh, Mang Ou-Yang, and Cheng-Chung Lee  »View Author Affiliations


Applied Optics, Vol. 50, Issue 33, pp. 6198-6205 (2011)
http://dx.doi.org/10.1364/AO.50.006198


View Full Text Article

Enhanced HTML    Acrobat PDF (1385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel embedded relay lens hyperspectral imaging system (ERL-HIS) with high spectral resolution (nominal spectral resolution of 2.8 nm ) and spatial resolution ( 30 μm × 8 μm ) that transfers the scanning plane to an additional imaging plane through the internal relay lens so as to alleviate all outside moving parts for the scanning mechanism used in the traditional HIS, where image scanning is achieved by the relative movement between the object and hyperspectrometer. The ERL-HIS also enables high-speed scanning and can attach to a variety of optical modules for versatile applications. Here, we also demonstrate an application of the proposed ERL-HIS attached to a microscopic system for observing autofluorescent images of sliced cancer tissue samples.

© 2011 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 17, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 21, 2011
Published: November 15, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Yao-Fang Hsieh, Mang Ou-Yang, and Cheng-Chung Lee, "Finite conjugate embedded relay lens hyperspectral imaging system (ERL-HIS)," Appl. Opt. 50, 6198-6205 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-33-6198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996). [CrossRef]
  2. C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003). [CrossRef]
  3. M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45, 6283–6291 (2006). [CrossRef] [PubMed]
  4. T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497 (2000). [CrossRef]
  5. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001). [CrossRef] [PubMed]
  6. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006). [CrossRef] [PubMed]
  7. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006). [CrossRef]
  8. W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager ultraviolet and infrared applications,” Opt. Lett. 30, 1464–1466 (2005). [CrossRef] [PubMed]
  9. Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007). [CrossRef]
  10. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49, B59–B70 (2010). [CrossRef] [PubMed]
  11. B. Ford, M. Descuor, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444–453 (2001). [CrossRef] [PubMed]
  12. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010). [CrossRef] [PubMed]
  13. R. T. Kester, L. Gao, and T. S. Tkacyzk, “Development of image mappers for hyperspectral biomedical imaging application,” Appl. Opt. 49, 1886–1899 (2010). [CrossRef] [PubMed]
  14. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
  15. D. Malacara, Geometrical and Instrumental Optics(Academic, 1988).
  16. R. E. Fisher and B. T. Galeb, “Performance evaluation and optical testing,” in Optical System Design (SPIE, 2000), pp. 301–313.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited