OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells

Tulsi Anna, Vishal Srivastava, Dalip Singh Mehta, and Chandra Shakher  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. 6343-6351 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper quantitative imaging of biological cells using high-resolution full-field optical coherence microscopy (FF-OCM) is reported. The FF-OCM was realized using a swept-source system, a Mirau interferometer, and a CCD camera (a two-dimensional detection unit). A Mirau-interferometric objective lens was used to generate the interferometric signal. The signal was analyzed by a Fourier analysis technique. Optically sectioned amplitude images and a quantitative phase map of biological cells such as onion skin and red blood cells (RBCs) are demonstrated. Further, the refractive index profile of the RBCs is also presented. For the 50 × Mirau objective, the experimentally achieved axial and transverse resolution of the present system are 3.8 and 1.2 μm , respectively. The CCD provides parallel detection and measures enface images without X, Y, Z mechanical scanning.

© 2011 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: April 29, 2011
Revised Manuscript: July 15, 2011
Manuscript Accepted: July 24, 2011
Published: November 23, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Tulsi Anna, Vishal Srivastava, Dalip Singh Mehta, and Chandra Shakher, "High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells," Appl. Opt. 50, 6343-6351 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  2. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  3. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef]
  5. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010). [CrossRef]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  7. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range,” Opt. Express 14, 5937–5944 (2006). [CrossRef]
  8. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464(2006). [CrossRef]
  9. V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007). [CrossRef]
  10. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, Appl. Phys. Lett. 91, 181106 (2007). [CrossRef]
  11. M. P. Whelan, F. Lakestani, D. Rembges, and M. G. Sacco, “Heterodyne interference microscopy for non-invasive cell morphometry,” Proc. SPIE 6631, 66310E (2007). [CrossRef]
  12. J. A. Izatt, M. D. Kulkami, H. W. Wang, K. Kobayashi, and J. M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  13. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett. 28, 2064–2066 (2003). [CrossRef]
  14. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef]
  16. R. A. Leitgeb, W. Drexler, A. Unterherber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004). [CrossRef]
  17. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392 (2005). [CrossRef]
  18. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006). [CrossRef]
  19. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735(2006). [CrossRef]
  20. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008). [CrossRef]
  21. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282, 674–683(2009). [CrossRef]
  22. W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010). [CrossRef]
  23. R. Sharon, R. Friedman, and I. Abdulhalim, “Multilayered scattering reference mirror for full field optical coherence tomography with application to cell profiling,” Opt. Commun. 283, 4122–4125 (2010). [CrossRef]
  24. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  25. C. Kasseck, D. Rytz, N. C. Gerhardt, M. R. Hofmann, and N. Koukourakis, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17, 21015–21029 (2009). [CrossRef]
  26. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiplewavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653–655 (2009). [CrossRef]
  27. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35, 2961–2963 (2010). [CrossRef]
  28. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007). [CrossRef]
  29. W. Choi, C. F. Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007). [CrossRef]
  30. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef]
  31. G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Diseases 41, 10–16(2008). [CrossRef]
  32. A. Dobroiu, H. Sakai, H. Ootaki, M. Sato, and N. Tanno, “Coaxial Mirau interferometer,” Opt. Lett. 27, 1153–1155(2002). [CrossRef]
  33. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005). [CrossRef]
  34. P. Hariharan, Optical Interferometry (Academic, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited