OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

External cavity tunable quantum cascade lasers and their applications to trace gas monitoring

Gottipaty N. Rao and Andreas Karpf  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. A100-A115 (2011)
http://dx.doi.org/10.1364/AO.50.00A100


View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region ( 3 24 μm ) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the cur rent status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

© 2011 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6360) Spectroscopy : Spectroscopy, laser
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
LASER APPLICATIONS TO CHEMICAL, SECURITY, AND ENVIRONMENTAL ANALYSIS

History
Original Manuscript: August 24, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 3, 2010
Published: January 31, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Gottipaty N. Rao and Andreas Karpf, "External cavity tunable quantum cascade lasers and their applications to trace gas monitoring," Appl. Opt. 50, A100-A115 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-4-A100


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001). [CrossRef]
  3. F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.
  4. R. Paiella, Intersubband Transitions in Quantum Structures (McGraw-Hill, 2006).
  5. J. Cockburn, “Mid-infrared semiconductor optoelectronics,” in Mid-Infrared Quantum Cascade Lasers (Springer, 2006), Vol. 118, pp. 323–355.
  6. J. Faist and C. Sirtori, “Long-wave length infrared semiconductor lasers InP,” in GaAs-Based Quantum Cascade Lasers (Wiley, 2004), pp. 217–278.
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002). [CrossRef]
  8. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  9. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007). [CrossRef]
  10. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  11.  U.S. Environmental Protection Agency, “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal register 75, 6474–6537 (2010).
  12. U.S. Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006, (Environmental Protection Agency, 2008).
  13. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009). [CrossRef]
  14. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006). [CrossRef]
  15. G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.
  16. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990). [CrossRef] [PubMed]
  17. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998). [CrossRef]
  18. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.
  19. P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9–C4-12 (1994). [CrossRef]
  20. G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005). [CrossRef]
  21. A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009). [CrossRef] [PubMed]
  22. M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  24. C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).
  25. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010). [CrossRef] [PubMed]
  26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994). [CrossRef] [PubMed]
  27. A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958). [CrossRef]
  28. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008). [CrossRef]
  29. M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.
  30. M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010). [CrossRef]
  31. J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010). [CrossRef]
  32. M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001). [CrossRef]
  33. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010). [CrossRef]
  34. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009). [CrossRef]
  35. B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photon. 1, 517–525 (2007). [CrossRef]
  36. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007). [CrossRef]
  37. U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009). [CrossRef] [PubMed]
  38. G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010). [CrossRef] [PubMed]
  39. A. W. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010). [CrossRef] [PubMed]
  40. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010). [CrossRef] [PubMed]
  41. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010). [CrossRef] [PubMed]
  42. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009). [CrossRef]
  43. L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009). [CrossRef] [PubMed]
  44. J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997). [CrossRef]
  45. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997). [CrossRef]
  46. A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010). [CrossRef]
  47. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002). [CrossRef]
  48. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007). [CrossRef]
  49. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009). [CrossRef]
  50. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001). [CrossRef]
  51. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external cavity quantum cascade laser,” Opt. Lett. 27, 1788–1790 (2002). [CrossRef]
  52. G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002). [CrossRef]
  53. R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005). [CrossRef] [PubMed]
  54. A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007). [CrossRef] [PubMed]
  55. M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006). [CrossRef]
  56. M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006). [CrossRef] [PubMed]
  57. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010). [CrossRef] [PubMed]
  58. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  59. C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009). [CrossRef]
  60. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008). [CrossRef]
  61. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  62. G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009). [CrossRef]
  63. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006). [CrossRef]
  64. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009). [CrossRef] [PubMed]
  65. A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010). [CrossRef] [PubMed]
  66. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  67. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988). [CrossRef]
  68. K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19. [CrossRef]
  69. K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.
  70. G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010). [CrossRef] [PubMed]
  71. G. N. Rao and A. Karpf, “Extremely sensitive detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated absorption spectroscopy,” Appl. Opt. , to be published. [PubMed]
  72. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  73. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999). [CrossRef]
  74. R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  75. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001). [CrossRef]
  76. J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.
  77. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005). [CrossRef]
  78. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005). [CrossRef]
  79. K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33. [CrossRef]
  80. R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.
  81. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007). [CrossRef] [PubMed]
  82. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010). [CrossRef]
  83. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007). [CrossRef] [PubMed]
  84. C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009). [CrossRef]
  85. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009). [CrossRef] [PubMed]
  86. R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009). [CrossRef] [PubMed]
  87. R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited