OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Characterization of optical fiber imaging bundles for swept-source optical coherence tomography

Helen D. Ford and Ralph P. Tatam  »View Author Affiliations


Applied Optics, Vol. 50, Issue 5, pp. 627-640 (2011)
http://dx.doi.org/10.1364/AO.50.000627


View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fiber imaging bundles have been investigated for use in endoscopic optical coherence tomography (OCT) systems, to obviate the requirement for scanning components within the endoscope probe section. Images have been acquired using several optical configurations, two of which are common path in design. Configurations have been selected as having potential for miniaturization and inclusion in endoscopic-type systems, since the advantages of employing imaging bundles are most clearly seen in this type of system. The various types of bundle available are described, and the properties of the leached bundles used here are discussed in detail, with reference to their effect upon the performance of OCT systems. Images are displayed from measurements made on a range of samples.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(110.2350) Imaging systems : Fiber optics imaging
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: October 19, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 17, 2010
Published: February 3, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Helen D. Ford and Ralph P. Tatam, "Characterization of optical fiber imaging bundles for swept-source optical coherence tomography," Appl. Opt. 50, 627-640 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-5-627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987). [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987). [CrossRef] [PubMed]
  3. I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006). [CrossRef]
  4. A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991). [CrossRef]
  5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in-vivo imaging,” Nat. Biotechnol. 21, 1361–1367. [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef] [PubMed]
  7. S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence tomography using a Fourier domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007). [CrossRef] [PubMed]
  8. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866(1993). [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  10. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004). [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In-vivoendoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236–1238 (2004). [CrossRef] [PubMed]
  12. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996). [CrossRef] [PubMed]
  13. Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008). [CrossRef]
  14. D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008). [CrossRef]
  15. E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005). [CrossRef]
  16. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005). [CrossRef] [PubMed]
  17. H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).
  18. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005). [CrossRef] [PubMed]
  19. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007). [CrossRef]
  20. J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea 14, 1–13 (2010). [CrossRef] [PubMed]
  21. J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18, 7427–7439 (2010). [CrossRef] [PubMed]
  22. P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004). [CrossRef]
  23. D. Heard, Santec Europe Ltd., Magdalen Centre, Robert Robinson Ave., Oxford Science Park, OX4 4GA (personal communication, 2008).
  24. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47, 4560–4568 (2008). [CrossRef] [PubMed]
  25. “Wound image bundles,” http://www.schott.com/lightingimaging/english/products/healthcare/imagingfiberoptics/flexiblecomponents/wound.html (Accessed October 2010).
  26. D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004). [CrossRef]
  27. Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009). [CrossRef]
  28. D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008). [CrossRef]
  29. “Image Fiber,” http://www.fujikura.com/prod/imagefiber/p1_1.html (Accessed January 2011).
  30. “Transmitting images,” http://www.schott.com/lightingimaging/english/life-science/medical-products/transmitting-images.html (Accessed October 2010).
  31. K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).
  32. S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010). [CrossRef]
  33. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15, 2151–2165 (2007). [CrossRef] [PubMed]
  34. K. Bhura, Schott North America, Inc., 122 Charlton Street, Southbridge, Mass. 01550 (personal communication, November 2008).
  35. W. J. Tomlinson, “Aberrations of GRIN-rod lenses in multimode optical fiber devices,” Appl. Opt. 19, 1117–1126 (1980). [CrossRef] [PubMed]
  36. “GrinTech datasheets,” http://www.grintech.de/downloads.html (Accessed October 2010).
  37. “Coatings,” www.photonicsolutions.co.uk/datasheets/casi/CXCoatings.pdf (Accessed October 2010).
  38. U. Sharma and J. U. Kang, “Common-path OCT with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007). [CrossRef] [PubMed]
  39. D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971). [CrossRef]
  40. X. Li, J.-H. Han, X. Liu, and J. H. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833–4840 (2008). [CrossRef] [PubMed]
  41. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited