OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Effect of growth media and washing on the spectral signatures of aerosolized biological simulants

Christian Laflamme, Jean-Robert Simard, Sylvie Buteau, Pierre Lahaie, Denis Nadeau, Bernard Déry, Olivier Houle, Pierre Mathieu, Gilles Roy, Jim Ho, and Caroline Duchaine  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 788-796 (2011)
http://dx.doi.org/10.1364/AO.50.000788


View Full Text Article

Enhanced HTML    Acrobat PDF (1442 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have evaluated the influence of growth media and washing on the laser-induced fluorescence spectra of bacteria. Three different bacterial simulants were cultured in three types of growth media. Three kinds of samples were generated from each culture: the culture itself, the growth medium alone, and a triple-washed sample. The materials were injected as aerosols in a lab-sized lidar aerosol chamber to obtain their spectra. Using two different analysis approaches, signature variations were observed between the three kinds of samples for most combinations of growth media/bacteria. This study concludes that the culture media used influences the spectral signatures.

OCIS Codes
(260.7190) Physical optics : Ultraviolet
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6170) Spectroscopy : Spectra
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 7, 2010
Manuscript Accepted: November 18, 2010
Published: February 10, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Christian Laflamme, Jean-Robert Simard, Sylvie Buteau, Pierre Lahaie, Denis Nadeau, Bernard Déry, Olivier Houle, Pierre Mathieu, Gilles Roy, Jim Ho, and Caroline Duchaine, "Effect of growth media and washing on the spectral signatures of aerosolized biological simulants," Appl. Opt. 50, 788-796 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-6-788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999). [CrossRef]
  2. D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005). [CrossRef]
  3. J. Ho, “Real time detection of biological aerosols with aerodynamic particle sizer (FLAPS),” J. Aerosol Sci. 27, S581-S582 (1996). [CrossRef]
  4. J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457, 125-148 (2002). [CrossRef]
  5. C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004). [CrossRef]
  6. L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000). [CrossRef]
  7. C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006). [CrossRef]
  8. C.Weikamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).
  9. J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004). [CrossRef]
  10. Committee on Test and Evaluation of Biological Standoff Systems, Test and Evaluation of Biological Standoff Detection System (National Academies, 2008).
  11. K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007). [CrossRef]
  12. P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009). [CrossRef]
  13. S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009). [CrossRef]
  14. L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994). [CrossRef]
  15. J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985). [CrossRef]
  16. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Ann. Rev. 11, 227-256(2005). [CrossRef]
  17. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962). [CrossRef]
  18. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007). [CrossRef]
  19. S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.
  20. J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.
  21. Committee on Testing and Evaluation of Standoff Chemical Agent Detectors, Testing and Evaluation of Standoff Chemical Agent Detectors (National Academies, 2003).
  22. B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007). [CrossRef]
  23. B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009). [CrossRef]
  24. B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993). [CrossRef]
  25. S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005). [CrossRef]
  26. S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978). [CrossRef]
  27. H. I. Heaton, “Principal-component analysis of fluorescence cross-section spectra from pathogenic and stimulant bacteria,” Appl. Opt. 44, 6486-6495 (2005). [CrossRef]
  28. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003). [CrossRef]
  29. E. Jhala, C. Galilee, and L. Reinisch, “Principal component analysis of fluorescence changes upon growth conditions and washing of Pseudomonas aeruginosa,” Appl. Opt. 46, 5522-5528 (2007). [CrossRef]
  30. A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).
  31. S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004). [CrossRef]
  32. H. K. Chan, “Dry powder aerosol delivery systems: current and future research directions,” J. Aerosol Med. 19, 21-27(2006). [CrossRef]
  33. S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).
  34. K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001). [CrossRef]
  35. D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).
  36. S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979). [CrossRef]
  37. M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).
  38. A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002). [CrossRef]
  39. T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001). [CrossRef]
  40. K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006). [CrossRef]
  41. R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996). [CrossRef]
  42. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data,” Appl. Opt. 45, 3659-3664 (2006). [CrossRef]
  43. E. Yee and J. Ho, “Neural network recognition and classification of aerosol particle distribution measured with two-spot laser velocimeter,” Appl. Opt. 29, 2929-2938 (1990). [CrossRef]
  44. D. L. Rosen and J. B. Gillespie, “Fluorescence lidar with shot noise and sky radiance,” Appl. Opt. 31, 4214-4223 (1992). [CrossRef]
  45. M. S. Srivastava, Methods of Multivariate Statistics(Wiley, 2002).
  46. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999). [CrossRef]
  47. J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994). [CrossRef]
  48. J. E. Jackson, A User's Guide to Principal Components(Wiley, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited