OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes

Sarah A. Tedder, Jeffrey L. Wheeler, and Paul M. Danehy  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 901-914 (2011)
http://dx.doi.org/10.1364/AO.50.000901


View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610 nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes.

© 2011 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.7300) Lasers and laser optics : Visible lasers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 25, 2010
Revised Manuscript: November 29, 2010
Manuscript Accepted: November 30, 2010
Published: February 16, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Sarah A. Tedder, Jeffrey L. Wheeler, and Paul M. Danehy, "Characteristics of a broadband dye laser using Pyrromethene and Rhodamine dyes," Appl. Opt. 50, 901-914 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-50-6-901


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649–657 (1975). [CrossRef]
  2. W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge University, 2004).
  3. J. P. Webb, “Tunable organic dye lasers,” Anal. Chem. 44, 30–46 (1972). [CrossRef]
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  5. W. D. Brobst and J. E. Allen, Jr., “Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber,” Appl. Opt. 26, 3663–3670 (1987). [CrossRef] [PubMed]
  6. R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974). [CrossRef]
  7. U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009). [CrossRef]
  8. S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010). [CrossRef] [PubMed]
  9. T. G. Pavlopoulos, “Scaling of dye lasers with improved laser dyes,” Prog. Quantum Electron. 26, 193–224 (2002). [CrossRef]
  10. R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987). [CrossRef]
  11. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  12. S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999). [CrossRef]
  13. S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).
  14. E. H. Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005). [CrossRef] [PubMed]
  15. F. Y. Yueh and E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988). [CrossRef] [PubMed]
  16. F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003). [CrossRef]
  17. K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.
  18. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002). [CrossRef]
  19. J. Hult, “Construction of a modeless laser for applications in CARS spectroscopy,” Master’s thesis (Lund University1998).
  20. S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007). [CrossRef]
  21. A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005). [CrossRef]
  22. D. V. Flores, “Analysis of lean premixed turbulent combustion using coherent anti-Stokes Raman spectroscopy temperature measurements,” Ph.D. dissertation (Chemical Engineering Department, Brigham Young University, 2003).
  23. J. K. Haslam and P. O. Hedman, “The use of two pyromethene dyes in a single Stokes dye laser to make CARS temperature and multiple species (CO, CO2, O2, and, N2) concentration measurements,” in Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, 1996), paper WSS/CI 96F-086.
  24. W. P. Partridge, N. M. Laurendeau, C. C. Johnson, and R. N. Seppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994). [CrossRef] [PubMed]
  25. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997). [CrossRef] [PubMed]
  26. D. Hunt, Rocky Mountain Instruments Company, 106 Laser Dr., Lafayette, Colo., 80026 (personal communication, 2009).
  27. A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003). [CrossRef]
  28. R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004). [CrossRef]
  29. S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002). [CrossRef] [PubMed]
  30. F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004). [CrossRef] [PubMed]
  31. P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977). [CrossRef]
  32. P. Burlamachhi, R. Pratesi, and U. Vanni, “Tunable superradiant emission from a planar dye laser,” Appl. Opt. 15, 2684–2689 (1976). [CrossRef]
  33. G. I. Farmer, B. G. Huth, L. M. Taylor, and M. R. Kagan, “Concentration and dye length dependence of organic dye laser spectra,” Appl. Opt. 8, 363–366 (1969). [CrossRef] [PubMed]
  34. F. P. Schafer, Dye Lasers, 2nd Revised Ed. (Springer-Verlag, 1977).
  35. A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003). [CrossRef]
  36. S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008). [CrossRef] [PubMed]
  37. T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999). [CrossRef]
  38. M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004). [CrossRef]
  39. L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000). [CrossRef]
  40. M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006). [CrossRef]
  41. B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993). [CrossRef]
  42. Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978). [CrossRef]
  43. A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007). [CrossRef]
  44. G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001). [CrossRef]
  45. J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006). [CrossRef]
  46. N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005). [CrossRef]
  47. S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.
  48. W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004). [CrossRef]
  49. M. Pealat, P. Bouchardy, M. Lefebvre, and J.-P. Taran, “Precision of miliplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited