OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography

Liang-Yu Chen, Min-Chun Pan, and Min-Cheng Pan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 1, pp. 43-54 (2012)
http://dx.doi.org/10.1364/AO.51.000043


View Full Text Article

Enhanced HTML    Acrobat PDF (1567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we first propose the use of edge-preserving regularization in optimizing an ill-conditioned problem in the reconstruction procedure for diffuse optical tomography to prevent unwanted edge smoothing, which usually degrades the attributes of images for distinguishing tumors from background tissues when using Tikhonov regularization. In the edge-preserving regularization method presented here, a potential function with edge-preserving properties is introduced as a regularized term in an objective function. With the minimization of this proposed objective function, an iterative method to solve this optimization problem is presented in which half-quadratic regularization is introduced to simplify the minimization task. Both numerical and experimental data are employed to justify the proposed technique. The reconstruction results indicate that edge-preserving regularization provides a superior performance over Tikhonov regularization.

© 2012 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Processing

History
Original Manuscript: April 13, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: September 16, 2011
Published: December 22, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Liang-Yu Chen, Min-Chun Pan, and Min-Cheng Pan, "Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography," Appl. Opt. 51, 43-54 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-1-43


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004). [CrossRef] [PubMed]
  2. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers 18, 313–337 (2002).
  3. A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regularization,” SIAM Rev. 40, 636–666(1998). [CrossRef]
  4. Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt. 11, 064019 (2006). [CrossRef]
  5. K. Uludag, J. Steinbrink, A. Villringer, and H. Obriga, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” NeuroImage 22, 583–589 (2004). [CrossRef] [PubMed]
  6. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13, 041305 (2008). [CrossRef] [PubMed]
  7. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980 nm range,” Opt. Lett. 28, 1138–1140(2003). [CrossRef] [PubMed]
  8. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003). [CrossRef] [PubMed]
  9. M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt. 13, 054037(2008). [CrossRef] [PubMed]
  10. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt. 14, 034041 (2009). [CrossRef] [PubMed]
  11. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005). [CrossRef] [PubMed]
  12. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray—guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008). [CrossRef] [PubMed]
  13. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247(2000). [CrossRef] [PubMed]
  14. Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040(2008). [PubMed]
  15. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinki, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16, 17505–17520 (2008). [CrossRef] [PubMed]
  16. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002). [CrossRef] [PubMed]
  17. H. Dehghani, B. W. Pogue, B. Brooksby, S. Srinivasan, and K. D. Paulsen, “Image reconstruction strategies using dual modality MRI-NIR data,” in Proceedings of IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE, 2006), pp. 682–685. [CrossRef]
  18. P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction–classification method for diffuse optical tomography,” Phys. Med. Biol. 54, 6457–6476 (2009). [CrossRef] [PubMed]
  19. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt. 44, 1948–1956 (2005). [CrossRef] [PubMed]
  20. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4, 513–526 (2005). [PubMed]
  21. J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, “Inverse problems with structural prior information,” Inverse Probl. 15, 713–729 (1999). [CrossRef]
  22. A. H. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004). [CrossRef] [PubMed]
  23. A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Technol. 18, 87–95 (2007). [CrossRef]
  24. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
  25. H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423–12434 (2008). [CrossRef] [PubMed]
  26. N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007). [CrossRef] [PubMed]
  27. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001). [CrossRef] [PubMed]
  28. Y. Xu, X. Gu, T. Khan, and H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002). [CrossRef] [PubMed]
  29. M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008). [CrossRef] [PubMed]
  30. M. C. Pan, C. H. Chen, L. Y. Chen, M. C. Pan, and Y. M. Shyr, “Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images,” J. Biomed. Opt. 13, 024022 (2008). [CrossRef] [PubMed]
  31. M. C. Pan, L. Y. Chen, M. C. Pan, and C. H. Chen, “Inverse solution regularized with the edge-preserving constraint for NIR DOT,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBMD1. [PubMed]
  32. L. Y. Chen, M. C. Pan, and M. C. Pan, “Frequency-domain diffuse optical tomography implemented with edge-preserving regularization,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BME7. [PubMed]
  33. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deterministic edge-preserving regularization in computed imaging,” IEEE Trans. Image Process. 6, 298–311(1997). [CrossRef] [PubMed]
  34. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]
  35. M. C. Pan, C. H. Chen, M. C. Pan, and Y. M. Shyr, “Near infrared tomographic system based on high angular resolution mechanism—design, calibration, and performance,” Measurement 42, 377–389 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited