OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Wavelet analysis of Fourier polarized images of the human bile

Yuriy O. Ushenko, Olexander V. Dubolazov, Artem O. Karachevtsev, Mykhaylo P. Gorsky, and Yulya F. Marchuk  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. C133-C139 (2012)
http://dx.doi.org/10.1364/AO.51.00C133


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The model of generalized optical anisotropy of human bile is suggested, and the method of the polarimetric phase Fourier transform of the image of the laser radiation field that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a wavelet-diagnosis of cholelithiasis is analytically substantiated.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

History
Original Manuscript: December 12, 2011
Revised Manuscript: February 2, 2012
Manuscript Accepted: February 2, 2012
Published: March 29, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yuriy O. Ushenko, Olexander V. Dubolazov, Artem O. Karachevtsev, Mykhaylo P. Gorsky, and Yulya F. Marchuk, "Wavelet analysis of Fourier polarized images of the human bile," Appl. Opt. 51, C133-C139 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-10-C133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Wang, G. Yao, and L.-H. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002). [CrossRef]
  2. X. Wang and L.-H. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  3. X. Wang, L.-H. Wang, C.-W. Sun, and C. C. Yang, “Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments,” J. Biomed. Opt. 8, 608–617 (2003). [CrossRef]
  4. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).
  5. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  6. M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).
  7. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef]
  8. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  9. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  10. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999). [CrossRef]
  11. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000). [CrossRef]
  12. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001). [CrossRef]
  13. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000). [CrossRef]
  14. V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997). [CrossRef]
  15. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001). [CrossRef]
  16. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009). [CrossRef]
  17. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008). [CrossRef]
  18. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000). [CrossRef]
  19. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in bio tissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  20. S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008). [CrossRef]
  21. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D- distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010).
  22. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005). [CrossRef]
  23. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006). [CrossRef]
  24. A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002). [CrossRef]
  25. O. V. Angelsky, Yu. Ya Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D: Appl. Phys. 38, 4227–4235 (2005). [CrossRef]
  26. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D: Appl. Phys. 39, 3547–3558(2006). [CrossRef]
  27. O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotisues for diagnosing pathological changes,” J Biomed. Opt. 9, 679–690 (2004). [CrossRef]
  28. O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals,” Adv. Opt. Technol. 2010, 162832 (2010). [CrossRef]
  29. O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005). [CrossRef]
  30. Yu. F. Marchuk, A. G. Ushenko, A. I. Fediv, and Yu. F. Marchuk, “Singular structure of polarization images of bile secret in diagnostics of human physiological state,” Proc. SPIE 7368, 73681S (2009).
  31. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  32. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  33. D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  35. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Optica Applicata 32, 603–612 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited