OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Spatial-frequency Fourier polarimetry of human blood plasma in the diagnostics of pathological changes

Liviy I. Vatamanesku, Taras M. Boychuk, and Boris M. Bodnar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 10, pp. C215-C223 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method of polarization mapping of the optical-anisotropic polycrystalline networks of the blood plasma albumin and globulin proteins with adjusted spatial-frequency filtering of the coordinate distributions of the azimuth and ellipticity of the polarization of laser radiation in the Fourier plane is proposed and substantiated. A set of criteria of diagnosing prostate cancer based on the statistical correlation and fractal analysis of the spatial-frequency filtered polarization distributions generated by dendritic networks of albumin and globulin spherulitic networks has been detected and substantiated.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

Original Manuscript: December 12, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 22, 2012
Published: March 30, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Liviy I. Vatamanesku, Taras M. Boychuk, and Boris M. Bodnar, "Spatial-frequency Fourier polarimetry of human blood plasma in the diagnostics of pathological changes," Appl. Opt. 51, C215-C223 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science (Kluwer Academic, 2004).
  2. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002).
  4. O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005). [CrossRef]
  5. A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Technol. 2010, 423145 (2010). [CrossRef]
  6. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, and Ye. G. Ushenko, “Polarization singularities of the object field of skin surface,” J. Phys. D 39, 3547–3558 (2006). [CrossRef]
  7. O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005). [CrossRef]
  8. V. P. Pishak, A. G. Ushenko, P. Gryhoryshyn, S. B. Yermolenko, V. M. Rudeychuk, and O. V. Pishak, “Polarization structure of biospeckle fields in crosslinked tissues of a human organism: Vector I. structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997). [CrossRef]
  9. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001). [CrossRef]
  10. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrilă, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009). [CrossRef]
  11. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008). [CrossRef]
  12. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Yu. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000). [CrossRef]
  13. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998). [CrossRef]
  14. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2002), pp. 237–274.
  15. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  16. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302(1999). [CrossRef]
  17. S. H. Guminetskiy, O. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method for investigation of the peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008). [CrossRef]
  18. S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000). [CrossRef]
  19. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000). [CrossRef]
  20. A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001). [CrossRef]
  21. O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005). [CrossRef]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  23. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  25. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).
  26. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Yu. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  27. A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002). [CrossRef]
  28. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited