OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Fourier phasometry of human effusion polycrystalline networks

Pavlo O. Angelsky  »View Author Affiliations


Applied Optics, Vol. 51, Issue 10, pp. C70-C76 (2012)
http://dx.doi.org/10.1364/AO.51.000C70


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of the effusion of appendicitis has been suggested. The method of Fourier phasometry of linear and circular birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. A set of criteria of a polarization-phase differentiation of acute and gangrenous appendicitis states has been detected and substantiated.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

History
Original Manuscript: December 7, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: March 23, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Pavlo O. Angelsky, "Fourier phasometry of human effusion polycrystalline networks," Appl. Opt. 51, C70-C76 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-10-C70


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science (Kluwer, 2004).
  2. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles(Cambridge University, 2002).
  4. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for preclinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005). [CrossRef]
  5. A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns’ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D distributions of biological liquid crystal netmueller matrix elements in the process of their birefringent structure changes,” Adv. Opt. Tech. 2010, 423145 (2010).
  6. O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images,” J. Biomed. Opt. 11, 054030 (2006). [CrossRef]
  7. O. V. Angelsky, A. G. Ushenko, Y. A. Ushenko, Y. G. Ushenko, Y. Y. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images,” J. Biomed. Opt. 10, 064025 (2005). [CrossRef]
  8. S. C. Cowin, “How is a tissue built?” J. Biomech. Eng. 122, 553–568 (2000). [CrossRef]
  9. A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation,” Opt. Spectrosc. 89, 597–600 (2000). [CrossRef]
  10. A. G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering,” Opt. Spectrosc. 91, 937–940 (2001). [CrossRef]
  11. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  12. A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces,” Opt. Spectrosc. 92, 227–229 (2002). [CrossRef]
  13. V. Pishak, A. Ushenko, P. Gryhoryshyn, S. Yermolenko, V. Rudeychuk, and O. Pishak, “Study of polarization structure of biospeckle fields in cross linked tissues of human organism: 1. Vector structure of skin biospeckles,” Proc. SPIE 3317, 418–424 (1997). [CrossRef]
  14. A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images,” Opt. Spectrosc. 91, 932–936 (2001). [CrossRef]
  15. S. Yermolenko, A. Ushenko, P. Ivashko, F. Goudail, I. Gruia, C. Gavrila, D. Zimnyakov, and A. Mikhailova, “Spectropolarimetry of cancer change of biotissues,” Proc. SPIE 7388, 73881D (2009). [CrossRef]
  16. A. Ushenko, S. Yermolenko, A. Prydij, S. Guminetsky, I. Gruia, O. Toma, and K. Vladychenko, “Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues,” Proc. SPIE 7008, 70082C (2008). [CrossRef]
  17. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser polarimetry of pathological changes in biotissues,” Opt. Spectrosc. 89, 973–978 (2000). [CrossRef]
  18. O. V. Angel’skii, O. G. Ushenko, D. N. Burkovets, O. D. Arkhelyuk, and Y. A. Ushenko, “Polarization-correlation studies of multifractal structures in biotissues and diagnostics of their pathologic changes,” Laser Phys. 10, 1136–1142 (2000).
  19. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography,” Proc. SPIE 3196, 32–37 (1998). [CrossRef]
  20. J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, “Polarization-sensitive optical coherence tomography,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Dekker, 2002), pp. 237–274.
  21. M. J. Everett, K. Shoenenberger, B. W. Colston, and L. B. da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  22. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999). [CrossRef]
  23. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).
  24. S. H. Guminetskiy, A. G. Ushenko, I. P. Polyanskiy, A. V. Motrych, and F. V. Grynchuk, “The optical method of the investigation of peritonitis progressing process,” Proc. SPIE 7008, 700827 (2008). [CrossRef]
  25. O. V. Angelsky, A. G. Ushenko, and Y. G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state,” J. Biomed. Opt. 10, 060502 (2005). [CrossRef]
  26. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Scattering of laser radiation by multifractal biological structures,” Opt. Spectrosc. 88, 444–447 (2000). [CrossRef]
  27. O. V. Angel’skii, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, D. N. Burkovets, and Y. A. Ushenko, “Laser Polarimetry of Pathological Changes in Biotissues,” Opt. Spectrosc. 89, 973–978 (2000). [CrossRef]
  28. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  30. R. Jozwicki, K. Patorski, O. V. Angelsky, A. G. Ushenko, D. N. Burkovets, and Y. A. Ushenko, “Automatic polarimetric system for early medical diagnosis by biotissue testing,” Opt. Appl. 32, 603–612 (2002).
  31. O. V. Angelsky, S. G. Hanson, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009). [CrossRef]
  32. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19, 660–672 (2011). [CrossRef]
  33. O. V. Angelsky, P. P. Maksimyak, S. G. Hanson, and V. V. Ryukhin, “New feasibilities for characterizing rough surfaces by optical-correlation techniques,” Appl. Opt. 40, 5693–5707 (2001). [CrossRef]
  34. O. V. Angelsky, D. N. Burkovets, P. P. Maksimyak, and S. G. Hanson, “Applicability of the singular optics concept for diagnostics of random and fractal rough surfaces,” Appl. Opt. 42, 4529–4540 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited