OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity

Arindam Dasgupta and G. V. Pavan Kumar  »View Author Affiliations


Applied Optics, Vol. 51, Issue 11, pp. 1688-1693 (2012)
http://dx.doi.org/10.1364/AO.51.001688


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanodimers facilitate electromagnetic hotspots at their gap junction. By loading these gap junctions with nanomaterials, the plasmonic properties of nanodimer can be varied. In this study, we bridged the gap junction of gold (Au) nanocylinder dimer with palladium (Pd), and numerically evaluated the plasmonic properties of the designed nanostructure. We simulated the far-field extinction spectra of Pd bridged Au nanocylinder dimer, and identified the dipole and quadrupole plasmon modes at 839 and 578 nm, respectively. By varying the geometrical parameters of the Pd bridge, we revealed the ability to tune the dipolar plasmon resonance of the bridged dimer. Further, we exploited the hydrogen sensitivity of Pd bridge to harness the bridged-Au dimer as nanoplasmonic hydrogen sensor. Such nano-optical detection platforms have minimal spatial footprint and can be further harnessed for chip-based plasmonic sensing.

© 2012 Optical Society of America

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 7, 2011
Manuscript Accepted: October 21, 2011
Published: April 5, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Arindam Dasgupta and G. V. Pavan Kumar, "Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity," Appl. Opt. 51, 1688-1693 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-11-1688


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  2. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004). [CrossRef]
  3. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]
  4. Y.-F. Chau, H.-H. Yeh, C.-C. Liao, H.-F. Ho, C.-Y. Liu, and D. P. Tsai, “Controlling surface plasmon of several pair arrays of silver-shell nanocylinders,” Appl. Opt. 49, 1163–1169 (2010). [CrossRef]
  5. Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008). [CrossRef]
  6. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005). [CrossRef]
  7. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  9. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  10. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946–1953 (2009). [CrossRef]
  11. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999). [CrossRef]
  12. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107, 9964–9972 (2003). [CrossRef]
  13. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741–1746 (2010). [CrossRef]
  14. O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett. 10, 3090–3095 (2010). [CrossRef]
  15. S. Wang, S. Ota, B. Guo, J. Ryu, C. Rhodes, Y. Xiong, S. Kalim, L. Zeng, Y. Chen, M. A. Teitell, and X. Zhang, “Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array,” Nano Lett. 11, 3431–3434 (2011). [CrossRef]
  16. C. Sun, K.-H. Su, J. Valentine, Y. T. Rosa-Bauza, J. A. Ellman, O. Elboudwarej, B. Mukherjee, C. S. Craik, M. A. Shuman, F. F. Chen, and X. Zhang, “Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors,” ACS Nano 4, 978–984 (2010). [CrossRef]
  17. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. R. Hales, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008). [CrossRef]
  18. S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J. L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C 113, 4349–4356 (2009). [CrossRef]
  19. Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18, 3510–3518 (2010). [CrossRef]
  20. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011). [CrossRef]
  21. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008). [CrossRef]
  22. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  23. A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008). [CrossRef]
  24. A. Alu and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006). [CrossRef]
  25. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011). [CrossRef]
  26. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001). [CrossRef]
  27. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem. 76, 6321–6326 (2004). [CrossRef]
  28. J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005). [CrossRef]
  29. D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. 20, 4724–4727 (2008). [CrossRef]
  30. Q. Yan, S. Tao, and H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77, 953–961 (2009). [CrossRef]
  31. M. Ando, “Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air,” Trends Anal. Chem. 25, 937–948 (2006). [CrossRef]
  32. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17, 1124–1128 (2006). [CrossRef]
  33. M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. De Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys. 103, 064507 (2008). [CrossRef]
  34. D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett. 35, 3150–3152 (2010). [CrossRef]
  35. G. O. Cavalcanti, E. Fontana, and S. C. Oliveira, “Hydrogen detection using surface plasmon resonance in palladium films,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2009 (IEEE, 2009), pp. 312–315.
  36. C. Langhammer, I. Zoric, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7, 3122–3127 (2007). [CrossRef]
  37. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett. 95, 133504 (2009). [CrossRef]
  38. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zoric, “Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett. 10, 3529–3538 (2010). [CrossRef]
  39. S. Mikuriya, E. Maeda, M. Shuzo, I. Yamada, and J. J. Delaunay, “Hydrogen sensing with a rectangular lattice of sub-wavelength holes in palladium,” IEEJ Trans. Sensors Micromachines 130, 317–320 (2010). [CrossRef]
  40. D. Monzon-Hernandez, D. Luna-Moreno, D. M. Escobar, and J. Villatoro, “Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing,” Sens. Actuators B 151, 219–222 (2010). [CrossRef]
  41. K. Von Rottkay, M. Rubin, and P. A. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys. 85, 408–413 (1999). [CrossRef]
  42. W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496, 189–196 (2006). [CrossRef]
  43. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science 293, 2227–2231 (2001). [CrossRef]
  44. S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, “Fabrication of palladium nanotubes and their application in hydrogen sensing,” Chem. Mater. 17, 3445–3450 (2005). [CrossRef]
  45. Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of silicon nanowires functionalized with palladium nanoparticles in hydrogen sensors,” Nanotechnology 18, 345502 (2007). [CrossRef]
  46. K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology 20, 135502 (2009). [CrossRef]
  47. P. Offermans, H. D. Tong, C. J. M. Van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett. 94, 223110 (2009). [CrossRef]
  48. C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method,” Nanotechnology 21, 315203 (2010). [CrossRef]
  49. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008). [CrossRef]
  50. A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103, 113111 (2008). [CrossRef]
  51. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]
  52. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004). [CrossRef]
  53. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010). [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  55. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008). [CrossRef]
  56. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited