OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Light-emitting-diode-induced fluorescence detection of fluorescent dyes for capillary electrophoresis microchip with cross-polarization method

Xiaobo Yang, Weiping Yan, Zhihuan Liu, and Hongfeng Lv  »View Author Affiliations


Applied Optics, Vol. 51, Issue 11, pp. 1694-1700 (2012)
http://dx.doi.org/10.1364/AO.51.001694


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cross-polarization scheme is presented to filter out the excitation light from the emission spectrum of fluorescent dyes using green light emitting diodes as a light source and a linear charge coupled device as an intensity detector. The excitation light was linearly polarized and was then used to illuminate the fluorescent dyes in the microchannels of a capillary electrophoresis microchip. The detector was shielded by the second polarizer, oriented perpendicular to the excitation light. The fluorescent signals from Rhodamine B dyes were measured in a dilution series with resulting emission signals and four different concentrations of fluorescent dyes were detected simultaneously with the same excitation source and detector. A limit-of-detection of 1 μM was demonstrated for Rhodamine B dye under the optimal conditions.

© 2012 Optical Society of America

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(120.2440) Instrumentation, measurement, and metrology : Filters
(260.2510) Physical optics : Fluorescence
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 10, 2012
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 17, 2012
Published: April 5, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Xiaobo Yang, Weiping Yan, Zhihuan Liu, and Hongfeng Lv, "Light-emitting-diode-induced fluorescence detection of fluorescent dyes for capillary electrophoresis microchip with cross-polarization method," Appl. Opt. 51, 1694-1700 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-11-1694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Manz, N. Graber, and H. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B 1, 244–248 (1990). [CrossRef]
  2. P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels-the Holy Grail in μ-TAS?,” Anal. Bioanal. Chem. 382, 1771–1782 (2005). [CrossRef]
  3. A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Anal. Chem. 70, 684–688 (1998). [CrossRef]
  4. S. D. Mangru and D. J. Harrison, “Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis,” Electrophoresis 19, 2301–2307 (1998). [CrossRef]
  5. H. B. Qiu, J. L. Yan, X. H. Sun, J. F. Liu, W. D. Cao, X. R. Yang, and E. K. Wang, “Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector,” Anal. Chem. 75, 5435–5440 (2003). [CrossRef]
  6. J. J. Li, P. Thibault, N. H. Bings, C. D. Skinner, C. Wang, C. Colyer, and J. Harrison, “Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection: application to rapid analyses of proteolytic digests,” Anal. Chem. 71, 3036–3045 (1999). [CrossRef]
  7. H. Wensink, F. Benito-Lopez, D. C. Hermes, W. Verboom, H. J. G. E. Gardeniers, D. N. Reinhoudt, and A. van den Berg, “Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR,” Lab Chip 5, 280–284 (2005). [CrossRef]
  8. S. J. Hart and R. D. Jiji, “A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis,” Anal. Bioanal. Chem. 374, 385–389 (2002). [CrossRef]
  9. H. F. Li, J. M. Lin, R. G. Su, K. Uchiyama, and T. Hobo, “A compactly integrated laser-induced fluorescence detector for microchip electrophoresis,” Electrophoresis 25, 1907–1915 (2004). [CrossRef]
  10. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282, 484–487 (1998). [CrossRef]
  11. J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Anal. Chem. 73, 1622–1626 (2001). [CrossRef]
  12. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. deMello, and J. C. deMello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6, 981–987 (2006). [CrossRef]
  13. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73, 4491–4498 (2001). [CrossRef]
  14. M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng. 8, 33–38 (1998). [CrossRef]
  15. X. M. Zhou, D. F. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, “Determination of SARS-coronavirus by a microfluidic chip system,” Electrophoresis 25, 3032–3039 (2004). [CrossRef]
  16. N. Xue and W. P. Yan, “A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sens. Actuators A 173, 145–151 (2012). [CrossRef]
  17. Edmund Optics (Shenzhen) Co., Ltd., Shenzhen, China. http://www.edmundoptics.com/products/displayproduct.cfm?productid=2342 .
  18. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005). [CrossRef]
  19. F. Shen, M. Yang, Y. Yu, and Q. Kang, “Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip,” Chin. Chem. Lett. 19, 1333–1336 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited