OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Polymeric dual-slab waveguide interferometer for biochemical sensing applications

Meng Wang, Sanna Uusitalo, Christina Liedert, Jussi Hiltunen, Leena Hakalahti, and Risto Myllylä  »View Author Affiliations


Applied Optics, Vol. 51, Issue 12, pp. 1886-1893 (2012)
http://dx.doi.org/10.1364/AO.51.001886


View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polymer based dual-slab waveguide Young’s interferometer was demonstrated for biochemical sensing. Evanescent field is utilized for probing the binding events of biomolecules on the waveguide surface. Refractive index sensing in analyte and protein adsorption on the sensing surface were investigated with glucose de-ionized water solution and bovine serum albumin, immunoglobulin G solutions in phosphate buffered saline buffer. A detection limit of 105 RIU and 4pg/mm2 was achieved for homogeneous and surface sensing, respectively. Also, the influence of water absorption inside the polymeric device on the measurement stability was evaluated. The results indicate that the waveguide polymer sensor fabricated with the spin coating technique can achieve a satisfactory sensitivity for homogeneous refractive index sensing and, as well, for monitoring molecular binding events on the surface.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6010) Integrated optics : Sensors
(230.7400) Optical devices : Waveguides, slab
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Optical Devices

History
Original Manuscript: October 25, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 13, 2012
Published: April 11, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Meng Wang, Sanna Uusitalo, Christina Liedert, Jussi Hiltunen, Leena Hakalahti, and Risto Myllylä, "Polymeric dual-slab waveguide interferometer for biochemical sensing applications," Appl. Opt. 51, 1886-1893 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-12-1886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed. (Springer2009).
  2. R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003). [CrossRef]
  3. A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009). [CrossRef]
  4. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010). [CrossRef]
  5. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006). [CrossRef]
  6. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011). [CrossRef]
  7. J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010). [CrossRef]
  8. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225(1991). [CrossRef]
  9. A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000). [CrossRef]
  10. G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999). [CrossRef]
  11. G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003). [CrossRef]
  12. Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001). [CrossRef]
  13. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  14. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989). [CrossRef]
  15. T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003). [CrossRef]
  16. R. C. Weast, Handbook of Chemistry and Physics, 55th ed. (CRC Press, 1974), p. D-205.
  17. M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008). [CrossRef]
  18. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45, 1938–1942 (2006). [CrossRef]
  19. G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008). [CrossRef]
  20. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005). [CrossRef]
  21. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007). [CrossRef]
  22. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009). [CrossRef]
  23. B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978). [CrossRef]
  24. J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited