OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements

Vincent Ross, Denis Dion, and Daniel St-Germain  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2264-2276 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE 5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.6600) Coherence and statistical optics : Statistical optics
(110.3080) Imaging systems : Infrared imaging
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 25, 2011
Manuscript Accepted: December 14, 2011
Published: April 25, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Vincent Ross, Denis Dion, and Daniel St-Germain, "Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements," Appl. Opt. 51, 2264-2276 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005). [CrossRef]
  2. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN7,” Tech. Rep. GL-TR-89-0122 (Air-Force Geophysics Lab., 1989).
  3. V. Ross, D. Dion, and G. Potvin, “Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface,” J. Opt. Soc. Am. A 22, 2442–2453 (2005). [CrossRef]
  4. V. Ross and D. Dion, “Sea surface slope statistics derived from Sun glint radiance measurements and their apparent dependence on sensor elevation,” J. Geophys. Res. 112, C09015 (2007). [CrossRef]
  5. K. Stamnes, S.-C. Tsay, K. Jayaweera, and W. Wiscombe, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef]
  6. P. K. Acharya, A. Berk, G. P. Anderson, G. P. Anderson, N. F. Larsen, S. Tsay, and K. H. Stamnes, “MODTRAN4: multiple scattering and bidirectional reflectance distribution function (BRDF) upgrades to MODTRAN,” Proc. SPIE 3756, 354–362 (1999). [CrossRef]
  7. J. L. Forand, “The L(W)WKD marine boundary layer model—version 7.09,” Tech. Rep. 1999-099 (Defence Research Establishment of Valcartier (DREV), 1999).
  8. J. Piazzola, F. Bouchara, G. de Leeuw, and A. M. J. van Eijk, “Development of the Mediterranean extinction code (MEDEX),” Opt. Eng. 42, 912–924 (2003). [CrossRef]
  9. L. Gardenal and D. Dion, “Aerosol optical properties code (AeroProC),” Tech. Rep. (2006) (available via e-mail by submitting request to the authors).
  10. S. G. Gathman, G. Deleeuw, K. L. Davidson, and D. R. Jensen, eds., The Naval Oceanic Vertical Aerosol Model (1990).
  11. S. G. Gathman, “Optical properties of the marine aerosols as predicted by the navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
  12. T. Saemundsson, “Atmospheric refraction,” Sky and Telescope 72, 70 (1986).
  13. T. Elfouhaily, B. Chapron, K. Katsaros, and V. D., “A unified directional spectrum for long and short wind-driven waves,” J. Geophys. Res. 102, 15781–15796 (1997). [CrossRef]
  14. J. A. Shaw, D. Cimini, E. R. Westwater, Y. Han, H. M. Zorn, and J. H. Churnside, “Scanning infrared radiometer for measuring the air-sea temperature difference,” Appl. Opt. 40, 4807–4815 (2001). [CrossRef]
  15. A. Goroch, S. Burk, and K. L. Davidson, “Stability effects on aerosol size and height distributions,” Tellus 32, 245 (1980). [CrossRef]
  16. G. Tedeschi and J. Piazzola, “Development of a 2D marine aerosol transport model: application to the influence of thermal stability in the marine atmospheric boundary layer,” Atmos. Res. 101, 469–479 (2011). [CrossRef]
  17. P. A. Hwang and O. H. Shemdin, “The dependence of sea surface slope on atmospheric stability and swell conditions,” J. Geophys. Res. 93, 13903–13912 (1988). [CrossRef]
  18. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997). [CrossRef]
  19. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  20. C. Cox and W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  21. Y. Liu, X.-H. Yan, and P. A. Hwang, “The probability density function of the ocean surface slopes and its effects on radar backscatter,” J. Phys. Oceanogr. 27, 782–797 (1997). [CrossRef]
  22. W. J. Plant, “A new interpretation of sea-surface slope probability density functions,” J. Geophys. Res. 108, 3295–3298 (2003). [CrossRef]
  23. B. G. Smith, “Lunar surface roughness, shadowing and thermal emission,” J. Geophys. Res. 72, 4059–4067 (1967). [CrossRef]
  24. B. G. Smith, “Geometrical shadowing of a random rough surface,” IEEE Trans. Antennas Propag. 15, 668–671(1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited