OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy

Paul Petruck, Rainer Riesenberg, and Richard Kowarschik  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2333-2340 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (718 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light of a light-emitting diode or a common thermal source, such as a tungsten filament lamp, is known to be quasi-incoherent. We generated partially coherent light of these sources with a volume of coherence in the micrometer range of 5100μm3 by spatial and spectral filtering. The corresponding degree of partial coherence was adapted for microscopic interference setups, such as a digital in-line holographic microscope. The practicability of the sources was determined by the spectral emittance and the resulting signal-to-noise ratio (SNR) of the detector. The microscale coherence in correlation with the SNR and its resolution for microscopy were analyzed. We demonstrate how low-light-level, non-laser sources enable holographic imaging with a video frame rate (25frames/s), an intermediate SNR of 8 dB, and a volume of coherence of 3.4×104μm3. Holograms of objects with a lateral resolution of 1 μm were achieved using a microscope lens (50×/NA=0.7) and a CCD camera featuring a 4–12 bit dynamic range.

© 2012 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.0180) Imaging systems : Microscopy
(110.4280) Imaging systems : Noise in imaging systems
(110.4980) Imaging systems : Partial coherence in imaging
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: November 28, 2011
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 11, 2012
Published: April 30, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Paul Petruck, Rainer Riesenberg, and Richard Kowarschik, "Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy," Appl. Opt. 51, 2333-2340 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  2. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  3. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010). [CrossRef]
  4. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004). [CrossRef]
  5. G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001). [CrossRef]
  6. P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.
  7. L. Repetto, E. Piona, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004). [CrossRef]
  8. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  9. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008). [CrossRef]
  10. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008). [CrossRef]
  11. P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012). [CrossRef]
  12. J. Popp, V. V. Tuchin, A. Chiou, and S. Heinemann, eds., Handbook of Biophotonics, Vol. 1: Basics and Techniques (Wiley-VCH, 2011).
  13. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011).
  14. P. S. Idell and A. Webster, “Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain,” J. Opt. Soc. Am. A 9, 43–56 (1992). [CrossRef]
  15. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667–7673(2006). [CrossRef]
  16. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007). [CrossRef]
  17. M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011). [CrossRef]
  18. N. Pandey and B. Hennelly, “Quantization noise and its reduction in lensless Fourier digital holography,” Appl. Opt. 50, B58–B70 (2011). [CrossRef]
  19. G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44, 1216–1225(2005). [CrossRef]
  20. A. M. S. Maallo, P. F. Almoro, and S. G. Hanson, “Quantization analysis of speckle intensity measurements for phase retrieval,” Appl. Opt. 49, 5087–5094 (2010). [CrossRef]
  21. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008). [CrossRef]
  22. T. Meinecke, N. Sabitov, and S. Sinzinger, “Information extraction from digital holograms for particle flow analysis,” Appl. Opt. 49, 2446–2455 (2010). [CrossRef]
  23. S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011). [CrossRef]
  24. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010). [CrossRef]
  25. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011). [CrossRef]
  26. N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930). [CrossRef]
  27. A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109, 604–615 (1934). [CrossRef]
  28. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934). [CrossRef]
  29. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938). [CrossRef]
  30. P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010). [CrossRef]
  31. P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012). [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics7th ed., (Cambridge University, 2006).
  33. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009). [CrossRef]
  34. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191(2010). [CrossRef]
  35. Carl Zeiss MicroImaging GmbH, “AxioCam MRm data sheet,” www.zeiss.de (2011).
  36. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3985 KB)     
» Media 2: MOV (3983 KB)     
» Media 3: MOV (4020 KB)     
» Media 4: MOV (4038 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited