OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Influence of water environment on holmium laser ablation performance for hard tissues

Tao Lü, Qing Xiao, and Zhengjia Li  »View Author Affiliations

Applied Optics, Vol. 51, Issue 13, pp. 2505-2514 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.

© 2012 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 21, 2011
Revised Manuscript: January 21, 2012
Manuscript Accepted: January 31, 2012
Published: May 1, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Tao Lü, Qing Xiao, and Zhengjia Li, "Influence of water environment on holmium laser ablation performance for hard tissues," Appl. Opt. 51, 2505-2514 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Asshauer, K. Rink, and G. Delacretaz, “Acoustic transient generation by holmium-laser-induced cavitation bubbles,” Jpn. J. Appl. Phys. 76, 5007–5013 (1994). [CrossRef]
  2. O. Fohn, H. S. Pratisto, F. Konz, M. Ith, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side-firing fiber device for underwater tissue ablation with Ho:YAG and Er:YAG laser radiation,” J. Biomed. Opt. 3, 112–122 (1998). [CrossRef]
  3. V. Alfred and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003). [CrossRef]
  4. G. S. Fanton and M. F. Dillingham, “The use of the holmium:YAG-laser in arthroscopic surgery,” Sem. Orthop. 7, 102–116 (1992).
  5. M. Ith, H. Pratisto, H. U. Staubli, H. J. Altermatt, M. Frenz, and H. P. Weber, “Side effects of laser therapy on cartilage,” Sports Exerc. Inj. 2, 207–209 (1996).
  6. H. W. Kang, I. Rizoiu, and A. J. Welch, “Hard tissue ablation with a spray-assisted mid-IR laser,” Phys. Med. Biol. 52, 7243–7259 (2007). [CrossRef]
  7. H. W. Kang, J. Oh, and A. J. Welch, “Investigations on laser hard tissue ablation under various environments,” Phys. Med. Biol. 53, 3381–3390 (2008). [CrossRef]
  8. F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2201 (1988). [CrossRef]
  9. H. Lee, H. W. Kang, J. M. H. Teichman, J. Oh, and A. J. Welch, “Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38, 39–51 (2006). [CrossRef]
  10. L. Tao, X. Qing, Q. X. Dan, R. Kai, and J. L. Zheng, “Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater,” J. Biomed. Opt. 15, 048002 (2010). [CrossRef]
  11. P. E. Dyer, M. E. Khosroshahi, and S. J. Tuft, “Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,” Appl. Phys. B 56, 84–93 (1993). [CrossRef]
  12. J. Ren, M. Kelly, and L. Hesselink, “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30, 1740–1742 (2005). [CrossRef]
  13. G. Daminelli, J. Krűger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467, 334–341 (2004). [CrossRef]
  14. S. Zhu, Y. F. Lu, and M. H. Hong, “Laser ablation of solid substrates in a water-confined environment,” Appl. Phys. Lett. 79, 1396–1398 (2001). [CrossRef]
  15. H. W. Kang, H. Lee, and A. J. Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse,” J. Appl. Phys. 103, 083101 (2008). [CrossRef]
  16. D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186–193 (2002). [CrossRef]
  17. H. W. Kang, H. Lee, S. Chen, and A. J. Welch, “Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface,” IEEE J. Quantum Electron. 42, 633–642 (2006). [CrossRef]
  18. M. Mir, N. Gutknecht, R. Poprawe, L. Vanweersch, and F. Lampert, “Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses,” Lasers Med. Sci. 24, 365–374 (2009). [CrossRef]
  19. I. Turovets, D. Palanker, Y. Kokotov, I. Hemo, and A. Lewis, “Dynamics of cavitation bubble induced by 193 nm ArF excimer laser in concentrated sodium chloride solutions,” J. Appl. Phys. 79, 2689–2693 (1996). [CrossRef]
  20. A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70, 1684–1691 (1991). [CrossRef]
  21. D. Albagli, M. Dark, L. T. Perelman, G. von Rosenberg, I. Itzkan, and M. S. Feld, “Photomechanical basis of laser ablation of biological tissue,” Opt. Lett. 19, 1684–1686 (1994). [CrossRef]
  22. M. Frenz, V. Romano, A. D. Zweig, and H. P. Weber, “Instabilities in laser cutting of soft tissue,” J. Appl. Phys. 66, 4496–4503 (1989). [CrossRef]
  23. B. Majaron, D. Šušterčič, M. Lukač, U. Skalerič, and N. Funduk, “Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues,” Appl. Phys. B 66, 479–487 (1998). [CrossRef]
  24. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced pressure waves in water,” Appl. Opt. 37, 4092–4099 (1998). [CrossRef]
  25. A. Vogel, I. Apitz, S. Freidank, and R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31, 1812–1814 (2006). [CrossRef]
  26. M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6–7 μm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8, 583–593 (2003). [CrossRef]
  27. R. Brinkmann, A. Knipper, G. Dröge, F. Schröer, B. Gromoll, and R. Birngruber, “Fundamental studies of fiber-guided soft tissue cutting by means of pulsed midinfrared lasers and their application in ureterotomy,” J. Biomed. Opt. 3, 85–95 (1998). [CrossRef]
  28. R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, “Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring,” IEEE J. Quantum Electron. 2, 826–835 (1996). [CrossRef]
  29. E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacretaz, and A. J. Welch, “Effect of pulse duration on bubble formation and laser-induced pressure waves during Holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996). [CrossRef]
  30. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. H. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, “Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25, 22–37 (1999). [CrossRef]
  31. H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy,” Lasers Surg. Med. 38, 762–772 (2006). [CrossRef]
  32. K. Nahen and A. Vogel, “Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation,” J. Biomed. Opt. 7, 165–178 (2002). [CrossRef]
  33. M. Mrochen, P. Riedel, C. Donitzky, and T. Seiler, “Erbium:yttrium-aluminum-garnet laser induced vapor bubbles as a function of the quartz fiber tip geometry,” J. Biomed. Opt. 6, 344–350 (2001). [CrossRef]
  34. M. Frenz, F. Konz, H. Pratisto, and H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:YAG aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998). [CrossRef]
  35. M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 µm and 2.79 µm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2035 (1996). [CrossRef]
  36. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89, 2400–2403 (2001). [CrossRef]
  37. G. B. Altshuler, A. V. Belikov, and Y. A. Sinelnik, “A laser-abrasive method for the cutting of enamel and dentin,” Lasers Surg. Med. 28, 435–444 (2001). [CrossRef]
  38. M. Staninec, J. Xie, C. Q. Le, and D. Fried, “Influence of an optically thick water layer on the bond-strength of composite resin to dental enamel after IR laser ablation,” Lasers Surg. Med. 33, 264–269 (2003). [CrossRef]
  39. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, M. Graessel, J. M. Dawes, R. M. Lowe, and P. Hannaford, “Precision ablation of dental enamel using a subpicosecond pulsed laser,” Aust. Dent. J. 48, 233–239 (2003). [CrossRef]
  40. Y. Kim, E. S. Choi, W. Kwak, Y. Shin, W. Jung, Y. Ahn, and Z. Chen, “Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography,” Opt. Laser Technol. 40, 625–631 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited