OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples

Anthony L. Gomez, Ronald F. Renzi, Julia A. Fruetel, and Ray P. Bambha  »View Author Affiliations


Applied Optics, Vol. 51, Issue 14, pp. 2532-2540 (2012)
http://dx.doi.org/10.1364/AO.51.002532


View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An integrated fiber-optic sensor is described that uses incoherent broadband cavity enhanced absorption spectroscopy for sensitive detection of aqueous samples in nanoliter volumes. Absorption was measured in a 100 µm gap between the ends of two short segments of multimode graded-index fiber that were integrated into a capillary using a precision machined V-grooved fixture that allowed for passive fiber alignment. The other ends of the fibers were coated with dielectric mirrors to form a 9.5 cm optical resonator. Light from a fiber-coupled superluminescent diode was directly coupled into one end of the cavity, and transmission was measured using a fiber-coupled silicon photodiode. Dilute aqueous solutions of near infrared dye were used to determine the minimum detectable absorption change of 2.4×104 under experimental conditions in which pressure fluctuations limited performance. We also determined that the absolute minimum detectable absorption change would be 1.6×105 for conditions of constant pressure in which absorption measurement is limited by electronic and optical noise. Tolerance requirements for alignment are also presented.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(290.5850) Scattering : Scattering, particles
(300.1030) Spectroscopy : Absorption
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 3, 2012
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: May 4, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Anthony L. Gomez, Ronald F. Renzi, Julia A. Fruetel, and Ray P. Bambha, "Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples," Appl. Opt. 51, 2532-2540 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-14-2532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Li, H. P. Loock, and R. D. Oleschuk, “Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy,” Anal. Chem. 78, 5685–5692 (2006). [CrossRef]
  2. Z. G. Tong, M. Jakubinek, A. Wright, A. Gillies, and H. P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (2003). [CrossRef]
  3. H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011). [CrossRef]
  4. T. von Lerber and M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002). [CrossRef]
  5. M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, and H. P. Loock, “Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser,” Appl. Phys. B 88, 131–135 (2007). [CrossRef]
  6. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  7. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769(1998). [CrossRef]
  8. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758–6763 (2006). [CrossRef]
  9. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890–895 (2008). [CrossRef]
  10. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009). [CrossRef]
  11. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471–4477 (2008). [CrossRef]
  12. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005). [CrossRef]
  13. L. N. Seetohul, Z. Ali, and M. Islam, “Broadband cavity enhanced absorption spectroscopy as a detector for HPLC,” Anal. Chem. 81, 4106–4112 (2009). [CrossRef]
  14. A. L. Gomez, J. A. Fruetel, and R. P. Bambha, “High-sensitivity near-IR absorption measurements of nanoliter samples in a cavity enhanced fiber sensor,” Proc. SPIE 7397, 739706 (2009). [CrossRef]
  15. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,” Biopolymers 72, 391–398 (2003). [CrossRef]
  16. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130–2.50 µm spectral region,” Biopolymers 62, 122–128 (2001). [CrossRef]
  17. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997). [CrossRef]
  18. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 µm,” Biospectroscopy 3, 73–80 (1997). [CrossRef]
  19. P. Chanclou, C. Kaczmarek, G. Mouzer, P. Gravey, M. Thual, M. A. Lecollinet, and P. Rochard, “Expanded single-mode fiber using graded index multimode fiber,” Opt. Eng. 43, 1634–1642 (2004). [CrossRef]
  20. Epolin, Inc., 358-364 Adams Street, Newark, NJ 07105, USA (personal communication, 2009).
  21. Z. Tong, A. Wright, T. McCormick, R. Li, R. D. Oleschuk, and H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004). [CrossRef]
  22. H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” Trends Anal. Chem. 25, 655–664 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited