OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Adaptive semianalytical inversion of ocean color radiometry in optically complex waters

Vittorio E. Brando, Arnold G. Dekker, Young Je Park, and Thomas Schroeder  »View Author Affiliations


Applied Optics, Vol. 51, Issue 15, pp. 2808-2833 (2012)
http://dx.doi.org/10.1364/AO.51.002808


View Full Text Article

Enhanced HTML    Acrobat PDF (3829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To address the challenges of the parameterization of ocean color inversion algorithms in optically complex waters, we present an adaptive implementation of the linear matrix inversion method (LMI) [J. Geophys. Res. 101, 16631 (1996)], which iterates over a limited number of model parameter sets to account for naturally occurring spatial or temporal variability in inherent optical properties (IOPs) and concentration specific IOPs (SIOPs). LMI was applied to a simulated reflectance dataset for spectral bands representing measured water properties of a macrotidal embayment characterized by a large variability in the shape and amplitude factors controlling the IOP spectra. We compare the inversion results for the single-model parameter implementation to the adaptive parameterization of LMI for the retrieval of bulk IOPs, the IOPs apportioned to the optically active constituents, and the concentrations of the optically active constituents. We found that ocean color inversion with LMI is significantly sensitive to the a priori selection of the empirical parameters g0 and g1 of the equations relating the above-surface remote-sensing reflectance to the IOPs in the water column [J. Geophys. Res. 93, 10909 (1988)]. When assuming the values proposed for open-ocean applications for g0 and g1 [J. Geophys. Res. 93, 10909 (1988)], the accuracy of the retrieved IOPs, and concentrations was substantially lower than that retrieved with the parameterization developed for coastal waters [Appl. Opt. 38, 3831 (1999)] because the optically complex waters analyzed in this study were dominated by particulate and dissolved matter. The adaptive parameterization of LMI yielded consistently more accurate inversion results than the single fixed SIOP model parameterizations of LMI. The adaptive implementation of LMI led to an improvement in the accuracy of apportioned IOPs and concentrations, particularly for the phytoplankton-related quantities. The adaptive parameterization encompassing wider IOP ranges were more accurate for the retrieval of bulk IOPs, apportioned IOPs, and concentration of optically active constituents.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer
(200.4560) Optics in computing : Optical data processing
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 4, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 22, 2012
Published: May 15, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Vittorio E. Brando, Arnold G. Dekker, Young Je Park, and Thomas Schroeder, "Adaptive semianalytical inversion of ocean color radiometry in optically complex waters," Appl. Opt. 51, 2808-2833 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-15-2808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2008).
  2. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2000).
  3. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdniakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  4. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  5. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 doi:10.1029/2001JC000882 (2003). [CrossRef]
  6. K. Oubelkheir, L. Clementson, I. Webster, P. Ford, A. G. Dekker, L. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006). [CrossRef]
  7. D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009). [CrossRef]
  8. D. A. Aurin, H. M. Dierssen, M. S. Twardowski, and C. S. Roesler, “Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing,” J. Geophys. Res. 115, C07011 (2010). [CrossRef]
  9. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models—an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  10. H. J. Hoogenboom, A. G. Dekker, and J. F. De Haan, “Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion,” Can. J. Remote Sens. 24, 144–152 (1998).
  11. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  12. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  13. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378–1387 (2003). [CrossRef]
  14. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group (IOCCG, 2006).
  15. F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: method for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999). [CrossRef]
  16. P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt. 44, 4074–4085 (2005). [CrossRef]
  17. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007). [CrossRef]
  18. Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49, 369–381 (2010). [CrossRef]
  19. A. Magnuson, J. L. W. Harding, M. E. Mallonee, and J. E. Adolf, “Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight,” Estuar. Coast. Shelf Sci. 61, 403–424 (2004). [CrossRef]
  20. P. Lyon and F. Hoge, “The Linear Matrix Inversion Algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), pp. 49–56.
  21. H. J. Van Der Woerd and R. Pasterkamp, “HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters,” Remote Sens. Environ. 112, 1795–1807 (2008). [CrossRef]
  22. Y. Qin, A. G. Dekker, V. E. Brando, and D. Blondeau-Patissier, “Validity of SeaDAS water constituents retrieval algorithms in Australian tropical coastal waters,” Geophys. Res. Lett. 34, L21603 (2007). [CrossRef]
  23. E. Boss and C. Roesler, “Over constrained linear matrix inversion with statistical selection,” in IOCCG Report Number 5, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. Lee, ed. (IOCCG, 2006), pp. 57–62.
  24. K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, and J. P. Cannizzaro, MODIS Algorithm Theoretical Basis Document ATBD 19 (2003).
  25. H. R. Gordon, O. B. Brown, R. Evans, J. Brown, R. C. Smith, K. S. Baker, and D. C. Clark, “A semianalytical model of ocean colour,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  26. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995). [CrossRef]
  27. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005). [CrossRef]
  28. Z. Lee, K. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43, 4597–4964 (2004). [CrossRef]
  29. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. F. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  30. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  31. C. D. Mobley, “Hydrolight 3.0 users’ guide—final report—March 1995,” SRI project 5632, contract n00014-94-c-0062 (SRI International, 1995).
  32. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  33. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  34. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  35. M. S. Twardowski and P. L. Donaghay, “Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters,” J. Geophys. Res. 106, 2545–2560 (2001). [CrossRef]
  36. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002). [CrossRef]
  37. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003). [CrossRef]
  38. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. H. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666–677 (2008). [CrossRef]
  39. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007). [CrossRef]
  40. H. Volten, J. F. De Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998). [CrossRef]
  41. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004). [CrossRef]
  42. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing in Fortran (Cambridge University, 1992).
  43. J. Acker, P. Lyon, F. Hoge, Suhung Shen, M. Roffer, and G. Gawlikowski, “Interaction of Hurricane Katrina with optically complex water in the Gulf of Mexico: interpretation using satellite-derived inherent optical properties and chlorophyll concentration,” IEEE Geosci. Remote Sens. Lett. 6, 209–213 (2009). [CrossRef]
  44. C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109, 183–195 (2007). [CrossRef]
  45. G. Campbell and S. R. Phinn, “An assessment of the accuracy and precision of water quality parameters retrieved with the matrix inversion method,” Limnol. Oceanogr. 8, 16–29(2010). [CrossRef]
  46. I. T. Webster, I. Atkinson, H. Bostock, B. Brooke, G. Douglas, P. Ford, G. Hancock, M. Herzfeld, R. Leeming, C. Lemckert, N. Margvelashvili, B. Noble, K. Oubelkheir, L. Radke, A. Revill, B. J. Robson, D. Ryan, C. Schacht, C. Smith, J. Smith, V. Vicente-Beckett, and K. Wild-Allen, “The Fitzroy Contaminants Project—a study of the nutrient and fine-sediment dynamics of the Fitzroy Estuary and Keppel Bay,” Tech. Rep. 42 (Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, 2006).
  47. I. T. Webster and P. W. Ford, “Delivery, deposition and redistribution of fine sediments within macrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia,” Cont. Shelf Res. 30, 793–805 (2010). [CrossRef]
  48. L. Radke, P. Ford, I. Webster, I. Atkinson, G. Douglas, K. Oubelkheir, J. Li, B. Robson, and B. Brooke, “Biogeochemical zones within a macrotidal, dry-tropical fluvial-marine transition area: a dry-season perspective,” Aquat. Geochem. 16, 1–29 (2010). [CrossRef]
  49. C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009). [CrossRef]
  50. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  51. C. M. Jarque and A. K. Bera, “A test for normality of observations and regression residuals,” Int. Stat. Rev. 55, 163–172 (1987). [CrossRef]
  52. E. Laws, Mathematical Methods for Oceanographers: An Introduction (Wiley, 1997), p. 343.
  53. Z. Lee and K. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 1291–2201 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited