OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Optical assessment of particle size and composition in the Santa Barbara Channel, California

Tihomir Sabinov Kostadinov, David A. Siegel, Stéphane Maritorena, and Nathalie Guillocheau  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3171-3189 (2012)
http://dx.doi.org/10.1364/AO.51.003171


View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The suspended particle assemblage in complex coastal waters is a mixture of living phytoplankton, other autochthonous matter, and materials of terrestrial origin. The characterization of suspended particles is important for understanding regional primary productivity and rates of carbon sequestration, the fate of anthropogenic materials released to the coastal environment, as well as its effects on bulk optical properties, which influence the passive optical remote sensing of the coastal ocean. Here, the extensive bio-optical Plumes and Blooms data set is used to characterize the surface particle assemblage in the Santa Barbara Channel, California, a highly productive, upwelling-dominated, coastal site affected by episodic sediment inputs. Available variables sensitive to characteristics of the particle assemblage include particle beam attenuation and backscattering coefficients, High Performance Liquid Chromatography (HPLC) pigment concentration observations, chlorophyll and particulate organic carbon concentration, particulate and phytoplankton absorption coefficients, and Laser In-situ Scattering and Transmissometry (LISST) 100-X particle sizer observations. Comparisons among these particle assemblage proxy variables indicate good agreement and internal consistency among the data set. Correlations among chlorophyll concentration, particulate organic carbon concentration (POC), HPLC pigments, and proxies sensitive to the entire particle assemblage such as backscattering and LISST data strongly indicate that in spite of its coastal character, variability in the particle assemblage in the Santa Barbara Channel is dominated by its marine biogenic component. Relatively high estimates of the bulk real index of refraction and its positive correlation with chlorophyll and lithogenic silica concentration tentatively indicate that there is minerogenic particle influence in the Santa Barbara Channel that tends to covary with the phytoplankton blooms. Limitations of each particle assemblage proxy and remote-sensing applications are discussed.

© 2012 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 31, 2011
Revised Manuscript: November 2, 2011
Manuscript Accepted: January 8, 2012
Published: May 23, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Tihomir Sabinov Kostadinov, David A. Siegel, Stéphane Maritorena, and Nathalie Guillocheau, "Optical assessment of particle size and composition in the Santa Barbara Channel, California," Appl. Opt. 51, 3171-3189 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-16-3171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, “Primary production of the biosphere: integrating terrestrial and oceanic components,” Science 281, 237–240 (1998). [CrossRef]
  2. R. W. Eppley and B. J. Peterson, “Particulate organic matter flux and planktonic new production in the deep ocean,” Nature 282, 677–680 (1979). [CrossRef]
  3. P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998). [CrossRef]
  4. C. Le Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. Cotrim da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Global Change Biology 11, 2016–2040 (2005).
  5. F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106, 19939–19956(2001). [CrossRef]
  6. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006). [CrossRef]
  7. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7, 3239–3257 (2010).
  8. A. Rinaldo, A. Maritan, K. K. Cavender-Bares, and S. Chisholm, “Cross-scale ecological dynamics and microbial size spectra in marine ecosystems,” Proc. R. Soc. Lond. Ser. B 269, 2051–2059 (2002). [CrossRef]
  9. P. A. Marquet, R. A. Quiñones, S. Abades, F. Labra, M. Tognelli, M. Arim, and M. Rivadeneira, “Scaling and power-laws in ecological systems,” J. Exp. Biol. 208, 1749–1769 (2005). [CrossRef]
  10. I. N. McCave, “Vertical flux of particles in the ocean,” Deep Sea Res. 22, 491–502 (1975).
  11. M. J. Behrenfeld and M. P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42, 1479–1491 (1997). [CrossRef]
  12. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1, 19–42 (2009).
  13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem Cycles 19, GB1006 (2005). [CrossRef]
  14. T. K. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem Cycles 22, GB2024 (2008). [CrossRef]
  15. R. W. Sheldon and T. R. Parsons, A Practical Manual on the Use of the Coulter Counter in Marine Science (Coulter Electronics, 1967).
  16. T. Milligan and K. Kranck, “Electroresistance particle size analyzers,” in Principles, Methods, and Application of Particle Size Analysis, J. Syvitski, ed. (Cambridge University, 1991), pp. 109–118.
  17. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000). [CrossRef]
  18. W. H. Slade and E. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14, 3602–3615 (2006). [CrossRef]
  19. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Meth. 5, 396–406 (2007).
  20. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008). [CrossRef]
  21. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  22. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Progress in Oceanography 61, 27–56 (2004). [CrossRef]
  23. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009).
  24. T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18, 15419–15425 (2010). [CrossRef]
  25. S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43, 3489–3503 (2004). [CrossRef]
  26. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. Ann. Rev. 45, 1–38 (2007).
  27. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 15073–15093 (2010). [CrossRef]
  28. D. Stramski and D. A. Kiefer, Light scattering by microorganisms in the open ocean,” Prog. Oceanography 28, 343–383 (1991). [CrossRef]
  29. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001). [CrossRef]
  30. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001). [CrossRef]
  31. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009). [CrossRef]
  32. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010). [CrossRef]
  33. D. Risović, “Two-component model of sea particle size distribution,” Deep-Sea Res., Part I 40, 1459–1473 (1993). [CrossRef]
  34. D. Risović, “Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater,” Appl. Opt. 41, 7092–7101 (2002). [CrossRef]
  35. M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996). [CrossRef]
  36. H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006). [CrossRef]
  37. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef]
  38. D. Antoine, D. A. Siegel, T. Kostadinov, S. Maritorena, N. B. Nelson, B. Gentili, V. Vellucci, and N. Guillocheau, “Variability in optical particle backscattering in three contrasting bio-optical oceanic regimes,” Limnol. Oceanogr. 56, 955–973 (2011). [CrossRef]
  39. D. A. Toole and D. A. Siegel, “Modes and mechanisms of ocean color variability in the Santa Barbara Channel,” J. Geophys. Res. 106, 26985–27000 (2001). [CrossRef]
  40. M. P. Otero and D. A. Siegel, “Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel,” Deep-Sea Res., Part II 51, 1139–1149 (2004).
  41. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, “Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA,” J. Geophys. Res. 112, C07011 (2007). [CrossRef]
  42. J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV, Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols (NASA Tech. Memo. 2003-01674-0, 2003).
  43. T. S. Kostadinov, Assessment of optical variability and closures in the Santa Barbara Channel, California using the plumes and blooms in-situ dataset, M.A. thesis (University of California Santa Barbara, 2005).
  44. C. R. Anderson, D. A. Siegel, M. A. Brzezinski, and N. Guillocheau, “Controls on temporal patterns in phytoplankton community structure in the Santa Barbara Channel, California,” J. Geophys. Res. 113, C04038 (2008). [CrossRef]
  45. C. Moore, J. R. V. Zaneveld, and J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” Proc. SPIE 1750, 330–337 (1992). [CrossRef]
  46. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36, 6035–6046 (1997). [CrossRef]
  47. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999). [CrossRef]
  48. AC Meter Protocol Document, Rev. P (WET Labs, Inc., 2009).
  49. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44–55 (1994). [CrossRef]
  50. P. Diehl and H. Haardt, “Measurement of the spectral attenuation to support biological research in a “plankton tube” experiment,” Oceanologica Acta 3, 89–96 (1980).
  51. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997). [CrossRef]
  52. HydroScat-6 Spectral Backscattering Sensor & Fluorometer User’s Manual, Rev. I (HOBILabs, Inc., 2010).
  53. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974), pp. 1–24.
  54. A. Morel, “The scattering of light by sea water: experimental results and theoretical approach (Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique; in French)” in Optics of the Sea, Interface and In-Water Transmission and Imaging, AGARD Lecture Series No. 61 (Technical Editing and Reproduction, 1973), pp. 3.1.1–3.1.76.
  55. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39, 456–469 (2000). [CrossRef]
  56. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  57. D. A. Siegel, M. C. O’Brien, J. C. Sorensen, D. A. Konnoff, and E. Fields, BBOP Data Processing and Sampling Procedures, v1, US JGOFS planning report No. 19 (Woods Hole Oceanographic Institution, 1995).
  58. C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010). [CrossRef]
  59. O. Mikkelsen, H. Dierssen, and E. Boss (Personal communication, 2010).
  60. S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45, 569–579 (2000). [CrossRef]
  61. J. M. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: heterotrophic compartment of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23, 1256–1263 (1978). [CrossRef]
  62. A. Ciotti, M. Lewis, and J. Cullen, “Assessment of the relationship between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002). [CrossRef]
  63. A. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental sheld region off Brazil,” Limnol. Oceangr. Methods 4, 237–253 (2006).
  64. M. A. Brzezinski and D. M. Nelson, “A solvent extraction method for the colorimetric determination of nanomolar concentrations of silicic acid in seawater,” Mar. Chem. 19, 139–151 (1986). [CrossRef]
  65. M. A. Brzezinski and D. M. Nelson, “Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring,” Deep-Sea Res., Part I 36, 1009–1030 (1989). [CrossRef]
  66. L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910, 31–49 (2001). [CrossRef]
  67. R. R. Sokal and F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed. (W. H. Freeman, 1981).
  68. N. B. Nelson, D. A. Siegel, C. A. Carlson, C. Swan, W. M. Smethie, and S. Khatiwala, “Hydrography of chromophoric dissolved organic matter in the North Atlantic,” Deep-Sea Res., Part I 54, 710–731 (2007). [CrossRef]
  69. C. M. Swan, D. A. Siegel, N. B. Nelson, C. A. Carlson, and E. Nasir, “Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean,” Deep-Sea Res., Part I 56, 2175–2192 (2009). [CrossRef]
  70. “Hydroscat-6 Backscattering Sensor—Fluorometer Specifications,” (HOBILabs, Inc., 2010), http://www.hobilabs.com/cms/index.cfm?PrimaryKeyList=,37,152,1253,1266&ItemID=2474 .
  71. T. J. Petzold, Volume scattering functions for selected ocean waters, Tech. rep. SIO 72-78 (Scripps Institution of Oceanography, 1972).
  72. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019–7031 (2007). [CrossRef]
  73. R. C. Smith and K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978). [CrossRef]
  74. D. A. Siegel, S. Maritorena, N. B. Nelson, and M. J. Behrenfeld, “Independence and interdependencies among global ocean color properties: reassessing the bio-optical assumption,” J. Geophys. Res. 110, C07011 (2005). [CrossRef]
  75. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  76. S. Sathyendranath, ed. “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” Reports of the International Ocean-Colour Coordinating Group No. 3, (IOCCG, 2000).
  77. J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. MacKenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995–2002 (2004). [CrossRef]
  78. A. Huyer, “Coastal upwelling in the California Current System,” Progr. Oceanog. 12, 259–284 (1983). [CrossRef]
  79. R. J. Lynn and J. J. Simpson, “The California Current System: the seasonal variability of its physical characteristics,” J. Geophys. Res. 92, 12947–12966 (1987). [CrossRef]
  80. C. B. Mouw and J. A. Yoder, “Optical determination of phytoplankton size composition from global SeaWiFS imagery,” J. Geophys. Res. 115, C12018 (2010). [CrossRef]
  81. S. Alvain, C. Moulin, Y. Dandonneau, and H. Loisel, “Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view,” Global Biogeochem Cycles 22, GB3011 (2008). [CrossRef]
  82. R. J. W. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115, 325–339(2011). [CrossRef]
  83. S. W. Chisholm, “Phytoplankton size” in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski and A. D. Woodhead, eds. (Plenum, 1992), pp. 213–237.
  84. D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep-Sea Res., Part I 46, 335–351 (1999). [CrossRef]
  85. E. E. McPhee-Shaw, D. A. Siegel, L. Washburn, M. A. Brzezinski, J. L. Jones, A. Leydecker, and J. Melack, “Mechanisms for nutrient delivery to the inner shelf: observations from the Santa Barbara Channel,” Limnol. Oceanogr. 52, 1748–1766 (2007). [CrossRef]
  86. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070–7077 (1994). [CrossRef]
  87. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004). [CrossRef]
  88. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005). [CrossRef]
  89. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006). [CrossRef]
  90. D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009). [CrossRef]
  91. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5, 495–507 (2008).
  92. R. F. Shipe, U. Passow, M. A. Brzezinski, W. M. Graham, D. K. Pak, D. A. Siegel, and A. L. Alldredge, “Effects of the 1997–98 El Niño on seasonal variations in suspended and sinking particles in the Santa Barbara basin,” Progr. Oceanography 54, 105–127 (2002). [CrossRef]
  93. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  94. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  95. S. Maritorena, D. A. Siegel, and A. Peterson, “Optimization of a semi-analytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002). [CrossRef]
  96. J. Damuth, “Population density and body size in mammals,” Nature 290, 699–700 (1981). [CrossRef]
  97. A. J. Irwin, Z. V. Finkel, O. M. E. Schofield, and P. G. Falkowski, “Scaling-up from nutrient physiology to the size-structure of phytoplankton communities,” J. Plankton Res. 28, 459–471 (2006). [CrossRef]
  98. A. Sciandra, D. Stramski, M. Babin, M. Twardowsky, and C. Grob, “Diel and spatial variability of the particle size distribution, notably of submicron particles, in the South Pacific Ocean,” presented at Ocean Optics XIX, Castelvecchio Pascoli, Italy, 2008.
  99. LISST 100-X Particle Size Analyzer, User’s Manual Version 5.0 (Sequoia Scientific, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited