OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Aperture effect correction in spectroscopic full-field optical coherence tomography

Antoine Morin and Jean-Marc Frigerio  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3431-3438 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatially resolved spectroscopic optical coherence tomography (OCT) has been demonstrated to be a convenient tool for spectral analysis in turbid media. For a full-field OCT configuration using a Mirau objective in the visible range, we found that the effective numerical aperture varies over the field of view, leading to field-dependent spectral shifts in the reconstructed spectra. Interferograms recorded with quasi-monochromatic lights are theoretically fitted with a general Mirau interference formula, and we propose a numerical correction method for white-light spectroscopy. The method is then tested successfully for the measure of the reflectivity of a plane gold sample.

© 2012 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(180.3170) Microscopy : Interference microscopy
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Imaging Systems

Original Manuscript: February 1, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 16, 2012
Published: May 31, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Antoine Morin and Jean-Marc Frigerio, "Aperture effect correction in spectroscopic full-field optical coherence tomography," Appl. Opt. 51, 3431-3438 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Progr. Phys. 66, 239–303 (2003). [CrossRef]
  3. P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1–9 (2008). [CrossRef]
  4. G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48, 6485–6491 (2009). [CrossRef]
  5. M. Kulkarni and J. Izatt, “Spectroscopic optical coherence tomography,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 1996), pp. 59–60.
  6. U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000). [CrossRef]
  7. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000). [CrossRef]
  8. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16, 17082–17091 (2008). [CrossRef]
  9. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004). [CrossRef]
  10. G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun. 283, 4810–4815 (2010). [CrossRef]
  11. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13, 5450–5462 (2005). [CrossRef]
  12. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17, 13157–13167(2009). [CrossRef]
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  14. A. Dubois, J. Selb, L. Vabre, and A.-C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326–2331 (2000). [CrossRef]
  15. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef]
  16. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006). [CrossRef]
  17. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31, 1079–1081 (2006). [CrossRef]
  18. G. Schulz and K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991). [CrossRef]
  19. K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt. 28, 3333–3338 (1989). [CrossRef]
  20. F. R. Tolmon and J. G. Wood “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956). [CrossRef]
  21. D.-S. Wan, J. Schmit, and E. Novak, “Effects of source shape on the numerical aperture factor with a geometrical-optics model,” Appl. Opt. 43, 2023–2028 (2004). [CrossRef]
  22. J. F. Biegen, “Calibration requirements for Mirau and Linnik microscope interferometers,” Appl. Opt. 28, 1972–1974(1989). [CrossRef]
  23. T. Doi, K. Toyoda, and Y. Tanimura, “Effects of phase changes on reflection and their wavelength dependence in optical profilometry,” Appl. Opt. 36, 7157–7161 (1997). [CrossRef]
  24. A. Dubois, “Effects of phase change on reflection in phase-measuring interference microscopy,” Appl. Opt. 43, 1503–1507 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited