OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues

J. Ebenezar, Yang Pu, W. B. Wang, C. H. Liu, and R. R. Alfano  »View Author Affiliations


Applied Optics, Vol. 51, Issue 16, pp. 3642-3649 (2012)
http://dx.doi.org/10.1364/AO.51.003642


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stokes shift spectroscopy (S3) is an emerging approach toward cancer detection. The goal of this paper is to evaluate the diagnostic potential of the S3 technique for the detection and characterization of normal and cancerous prostate tissues. Pairs of cancerous and normal prostate tissue samples were taken from each of eight patients. Stokes shift spectra were measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20nm between them. The salient features of this technique are the highly resolved emission peaks and significant spectral differences between the normal and cancerous prostate tissues, as observed in the wavelength region of 250 to 600 nm. The Stokes shift spectra of cancerous and normal prostate tissues revealed distinct peaks around 300, 345, 440, and 510 nm, which are attributed to tryptophan, collagen, NADH, and flavin, respectively. To quantify the spectral differences between the normal and cancerous prostate tissues, two spectral ratios were computed. The findings revealed that both ratio parameters R1=I297/I345 and R2=I307/I345 were excellent diagnostic ratio parameters giving 100% specificity and 100% sensitivity for distinguishing cancerous tissue from the normal tissue. Our results demonstrate that S3 is a sensitive and specific technique for detecting cancerous prostate tissue.

© 2012 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6170) Spectroscopy : Spectra

ToC Category:
Spectroscopy

History
Original Manuscript: March 6, 2012
Manuscript Accepted: April 4, 2012
Published: June 1, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
J. Ebenezar, Yang Pu, W. B. Wang, C. H. Liu, and R. R. Alfano, "Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues," Appl. Opt. 51, 3642-3649 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-16-3642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Cancer Society, Cancer Facts and Figures (American Cancer Society, 2009).
  2. L. V. Rodriguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160, 2115–2120 (1998).
  3. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, “Laser-induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984). [CrossRef]
  4. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987). [CrossRef]
  5. W. Zheng, W. Lau, C. Christopher, K. C. Soo, and M. Oliva, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104, 477–481 (2003).
  6. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, “UV reflectance spectroscopy probes DNA and protein changes in human breast tissues,” J. Clin. Laser Med. Surg. 19, 35–39 (2001). [CrossRef]
  7. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer,” IEEE Trans. Biomed. Eng. 50, 1233–1242 (2003). [CrossRef]
  8. Y. Pu, W. Wang, G. Tang, and R. R. Alfano, “Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studies using native fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt. 15, 047008 (2010). [CrossRef]
  9. C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000). [CrossRef]
  10. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002).
  11. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996). [CrossRef]
  12. D. C. G. De Veld, M. Skurichina, M. J. H. Witjes, R. P. W. Duin, H. J. C. M. Sterenborg, W. M. Star, and J. L. Roodenburg, “A clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy,” J. Biomed. Opt. 9, 940–950 (2004). [CrossRef]
  13. L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71, 737–742 (2000). [CrossRef]
  14. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia 11, 165–181 (2006). [CrossRef]
  15. Y. Yang, E. J. Celmer, M. J. Szczepaniak, and R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1996).
  16. R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron. 9, 148–153 (2003). [CrossRef]
  17. T. Vo-Dinh, “Multicomponent analysis by synchronous luminescence luminescence spectrometry,” Anal. Chem. 50, 396–401 (1978). [CrossRef]
  18. J. Ebenezar, P. Aruna, and S. Ganesan, “Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro,” Photochem. Photobiol. 86, 77–86 (2010). [CrossRef]
  19. J. Ebenezar, P. Aruna, and S. Ganesan, “Stokes shift spectroscopy for breast cancer diagnosis,” Proc. SPIE 7561, 75610B (2010).
  20. V. Masilamani, D. Rabah, M. Alsalhi, V. Trinka, and P. Vijayaraghavan, “Spectra discrimination of benign and malignant prostate tissues: a preliminary report,” Photochem. Photobiol. 87, 208–214 (2011). [CrossRef]
  21. R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy,” Photochem. Photobiol. 78, 384–392 (2003). [CrossRef]
  22. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples: NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771(1971).
  23. D. C. G. De Veld, T. C. Bakker Schut, M. Skurichina, M. J. H. Witjes, J. E. Van der Wal, J. L. N. Roodenburg, and H. J. C. M. Sterenborg, “Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions,” Lasers Med. Sci. 19, 203–209 (2005). [CrossRef]
  24. D. Theodorescu and T.L. Krupski, “Prostate cancer diagnosis and staging,” Medscape Reference, http://emedicine.medscape.com/article/458011-overview(2009) .
  25. D. L. Heintzelman, R. Lotan, and R. Richards-Kortum, “Characterization of autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia,” Photochem. Photobiol. 71, 327–332 (2000). [CrossRef]
  26. J. R. Lackowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983).
  27. D. Parmeswarn, S. Ganesan, R. Nalini, P. Aruna, V. Veeraganesh, and R. R. Alfano, “Native cellular fluorescence characteristics of normal and malignant epithelial cells from human larynx,” Proc. SPIE 2979, 759–764 (1997). [CrossRef]
  28. J. D. Pitts, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, “Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells,” J. Biomed. Opt. 6, 31–40 (2001). [CrossRef]
  29. A. S. Ladokhin, “Fluorescence spectroscopy in peptide and protein analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 5762–5779.
  30. C. Morrison, J. Thornhill, and E. Gaffney, “The connective tissue framework in the normal prostate, BPH and prostate cancer: analysis by scanning electron microscopy after cellular digestion,” Urol. Res. 28, 304–307 (2000).
  31. D. F. Gleason and G. T. Mellinger, “Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging,” J. Urol. 111, 58–64 (1974).
  32. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6, 385–396 (2001). [CrossRef]
  33. M. M. Sholley, G. P. Ferguson, and H. R. Seibel, “Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells,” Lab. Invest. 51, 624–634 (1984).
  34. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited