OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Multispectral decomposition for the removal of out-of-band effects of visible/infrared imaging radiometer suite visible and near-infrared bands

Bo-Cai Gao and Wei Chen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 18, pp. 4078-4086 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The visible/infrared imaging radiometer suite (VIIRS) is now onboard the first satellite platform managed by the Joint Polar Satellite System of the National Oceanic and Atmospheric Administration and NASA. It collects scientific data from an altitude of approximately 830 km in 22 narrow bands located in the 0.4–12.5 μm range. The seven visible and near-infrared (VisNIR) bands in the wavelength interval between 0.4–0.9 μm are known to suffer from the out-of-band (OOB) responses—a small amount of radiances far away from the center of a given band that can pass through the filter and reach detectors in the focal plane. A proper treatment of the OOB effects is necessary in order to obtain calibrated at-sensor radiance data [referred to as the Sensor Data Records (SDRs)] from measurements with these bands and subsequently to derive higher-level data products [referred to as the Environmental Data Records (EDRs)]. We have recently developed a new technique, called multispectral decomposition transform (MDT), which can be used to correct/remove the OOB effects of VIIRS VisNIR bands and to recover the true narrow band radiances from the measured radiances containing OOB effects. An MDT matrix is derived from the laboratory-measured filter transmittance functions. The recovery of the narrow band signals is performed through a matrix multiplication—the production between the MDT matrix and a multispectral vector. Hyperspectral imaging data measured from high altitude aircraft and satellite platforms, the complete VIIRS filter functions, and the truncated VIIRS filter functions to narrower spectral intervals, are used to simulate the VIIRS data with and without OOB effects. Our experimental results using the proposed MDT method have demonstrated that the average errors after decomposition are reduced by more than one order of magnitude.

© 2012 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 13, 2012
Manuscript Accepted: April 6, 2012
Published: June 14, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Bo-Cai Gao and Wei Chen, "Multispectral decomposition for the removal of out-of-band effects of visible/infrared imaging radiometer suite visible and near-infrared bands," Appl. Opt. 51, 4078-4086 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Murphy, B. Guenther, J. Ip, J. Jackson, D. Olenijczak, B. Iisager, and K. Hutchison, “Update on the algorithmic basis and predicted performance of selected VIIRS environmental data records,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006 (IEEE, 2006), pp. 266–269.
  2. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Electron. 27, 145–153 (1989). [CrossRef]
  3. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003). [CrossRef]
  4. C. Moeller, J. McIntire, T. Schwarting, and D. Moyer, “VIIRS F1 ‘best’ relative spectral response characterization by the government team,” Proc. SPIE 8153, 81530K (2011). [CrossRef]
  5. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Technical Memorandum 104566, Vol. 1 (NASA Goddard Space Flight Center, 1992).
  6. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995). [CrossRef]
  7. M. Wang, B. A. Franz, R. A. Barnes, and C. R. McClain, “Effects of spectral bandpass on SeaWiFS-retrieved near-surface optical properties of the ocean,” Appl. Opt. 40, 343–348 (2001). [CrossRef]
  8. R. A. Barnes, and J. J. Butler, “Modeling spectral effects in Earth-observing satellite instruments,” Proc. SPIE 6744, 67441K (2007). [CrossRef]
  9. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998). [CrossRef]
  10. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R. R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen, “The hyperspectral imager for the coastal ocean:instrument description and first images,” Appl. Opt. 50, 1501–1516 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited