OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Antireflective “moth-eye” structures on tunable optical silicone membranes

Robert Brunner, Bettina Keil, Christoph Morhard, Dennis Lehr, Jan Draheim, Ulrike Wallrabe, and Joachim Spatz  »View Author Affiliations

Applied Optics, Vol. 51, Issue 19, pp. 4370-4376 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Flexible silicone membranes are key components for tunable optical lenses. The elastic operation of the membranes impedes the use of classical layer systems for an antireflective (AR) effect. To overcome this limitation, we equipped optical elastomer membranes with “moth-eye” structures directly in the flexible silicone substrate. The manufacturing of the AR structures in the flexible membrane includes a mastering process based on block copolymer micelle nanolithography followed by a replication method. We investigate the performance of the resulting AR structures under strain of up to 20% membrane expansion. A significant transmittance enhancement of up to 2.5% is achieved over the entire visible spectrum, which means that more than half of the surface reflection losses are compensated by the AR structures.

© 2012 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures
(240.3990) Optics at surfaces : Micro-optical devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: March 15, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 2, 2012
Published: June 26, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Robert Brunner, Bettina Keil, Christoph Morhard, Dennis Lehr, Jan Draheim, Ulrike Wallrabe, and Joachim Spatz, "Antireflective “moth-eye” structures on tunable optical silicone membranes," Appl. Opt. 51, 4370-4376 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).
  2. D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  3. J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009). [CrossRef]
  4. J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.
  5. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–1857 (2008). [CrossRef]
  6. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009). [CrossRef]
  7. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
  8. U. Schulz, “Coating on plastics,” in Handbook of Plastic Optics, Bäumer, ed. (Wiley-VCH, 2005), pp. 149–180.
  9. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  10. R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011). [CrossRef]
  11. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008). [CrossRef]
  12. Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010). [CrossRef]
  13. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008). [CrossRef]
  14. L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed.(Oxford University, 2009).
  15. J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009). [CrossRef]
  16. W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain (McGraw-Hill, 2002).
  17. G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001). [CrossRef]
  18. Nippon Zeon: Zeonex brochure (Nippon Zeon Co., Ltd, Tokyo, 1998).
  19. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited