OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Microelectromechanical systems scanning-mirror-based handheld probe for fluorescence molecular tomography

Bin He, Lei Xi, Sean R. Samuelson, Huikai Xie, Lily Yang, and Huabei Jiang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4678-4683 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel handheld probe based on a microelectromechanical systems (MEMS) scanning mirror for three-dimensional (3D) fluorescence molecular tomography (FMT) is described. The miniaturized probe consists of a MEMS mirror for delivering an excitation light beam to multiple preselected points at the tissue surface and an optical fiber array for collecting the fluorescent emission light from the tissue. Several phantom experiments based on indocyanine green, an FDA approved near-infrared (NIR) fluorescent dye, were conducted to assess the imaging ability of this device. Tumor-bearing mice with systematically injected tumor-targeted NIR fluorescent probes were scanned to further demonstrate the ability of this MEMS-based FMT for imaging small animals.

© 2012 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 20, 2012
Manuscript Accepted: May 12, 2012
Published: July 3, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Bin He, Lei Xi, Sean R. Samuelson, Huikai Xie, Lily Yang, and Huabei Jiang, "Microelectromechanical systems scanning-mirror-based handheld probe for fluorescence molecular tomography," Appl. Opt. 51, 4678-4683 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010). [CrossRef]
  2. X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007). [CrossRef]
  3. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999). [CrossRef]
  4. Y. Tan, L. Yang, and H. Jiang, “DOT guided fluorescence molecular tomography of tumor cell quantification in mice,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA69.
  5. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999). [CrossRef]
  6. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002). [CrossRef]
  7. M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010). [CrossRef]
  8. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003). [CrossRef]
  9. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007). [CrossRef]
  10. Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011). [CrossRef]
  11. L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express 1, 1278–1283 (2010). [CrossRef]
  12. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010). [CrossRef]
  13. W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008). [CrossRef]
  14. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20, 8726–8731 (2012). [CrossRef]
  15. L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009). [CrossRef]
  16. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5342 (1998). [CrossRef]
  17. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008). [CrossRef]
  18. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited