OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles

Xiaodong Zhang, Deric J. Gray, Yannick Huot, Yu You, and Lei Bi  »View Author Affiliations

Applied Optics, Vol. 51, Issue 21, pp. 5085-5099 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The volume scattering function (VSF) of particles in water depends on the particles’ size distribution and composition as well as their shape and internal structure. Inversion of the VSF thus provides information about the particle population. The commercially available LISST instrument measures the scattering at near forward angles to estimate the bulk size distribution of particles larger than about 1 μm. By using scattering over the full angular range (0°–180°), the recently improved VSF-inversion method [ZhangX.TwardowskiM.LewisM., Appl. Opt. 50, 1240 (2011).] can characterize particles in terms of particle subpopulations, which are described by their unique size distribution and composition. Concurrent deployments of the Multispectral Volume Scattering Meter and the LISST in three coastal waters (i.e., Chesapeake Bay, Mobile Bay, and Monterey Bay) allowed us to compare the size distributions derived from these two different methods. We also obtained indirect validation of the results for submicrometer particles and for the composition of particles provided by the VSF-inversion method. For particle sizes ranging from 1 to 100 μm, the concentration was shown to vary over 10 orders of magnitude, and excellent agreement was found between the two methods with a mean relative difference less than 10% for the total size distributions. The inversion results also reproduced spectral variations in the shape of the VSF, although these spectral variations were not frequently observed in our study. The increased backscattering towards the shorter wavelengths was explained by the stronger influence of submicrometer particles affecting the backscattering. Based on published measurements of cell sizes and intracellular chlorophyll-a [Chl] concentrations over a wide range of phytoplankton species and strains, [Chl] was estimated for the inverted subpopulations that were identified as phytoplankton based on their refractive index and mean sizes. The estimated [Chl] agreed well with the fluorescence-based estimates in both magnitude and trend, thus reproducing a bloom event observed at a time series station.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 17, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 1, 2012
Published: July 12, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Xiaodong Zhang, Deric J. Gray, Yannick Huot, Yu You, and Lei Bi, "Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles," Appl. Opt. 51, 5085-5099 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Sharp, “Size classes of organic carbon in seawater,” Limnol. Oceanogr. 18, 441–447 (1973). [CrossRef]
  2. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002). [CrossRef]
  3. P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and feedbacks on ocean primary production,” Science 281, 200–206 (1998). [CrossRef]
  4. C. L. Quéré, S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson, and D. Wolf-Gladrow, “Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,” Glob. Chang. Biol. 11, 2016–2040 (2005). [CrossRef]
  5. A. Yool, E. E. Popova, and T. R. Anderson, “MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain,” Geosci. Model Dev. Discuss. 3, 1939–2019 (2010). [CrossRef]
  6. D. A. Hansell, “DOC in the global ocean carbon cycle,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, eds. (Academic, 2002), pp. 685–715.
  7. P. W. Boyd and T. W. Trull, “Understanding the export of biogenic particles in oceanic waters: is there consensus?” Prog. Oceanogr. 72, 276–312 (2007). [CrossRef]
  8. D. W. R. Wallace and C. D. Wirick, “Large air-sea gas fluxes associated with breaking waves,” Nature 356, 694–696 (1992). [CrossRef]
  9. E. C. Monahan and H. G. Dam, “Bubbles: an estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106, 9377–9383 (2001). [CrossRef]
  10. G. de Leeuw, E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz, “Production flux of sea spray aerosol,” Rev. Geophys. 49, RG2001 (2011). [CrossRef]
  11. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005). [CrossRef]
  12. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009). [CrossRef]
  13. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17, 12685–12691 (2009). [CrossRef]
  14. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009). [CrossRef]
  15. X. Zhang, L. Hu, M. S. Twardowski, and J. M. Sullivan, “Scattering by solutions of major sea salts,” Opt. Express 17, 19580–19585 (2009). [CrossRef]
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  17. K. S. Shifrin, Physical Optics of Ocean Water, AIP Translation Series (Springer, 1988).
  18. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001). [CrossRef]
  19. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, “Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf,” J. Geophys. Res. 106, 9509–9516 (2001). [CrossRef]
  20. A. Morel, “The scattering of light by seawater: experimental results and theorectical approach,” in Optics of the Sea (Interface and In-water Transmission and Imaging), North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development, Electromagnetic Wave Propagation Panel, Vol. 61 of AGARD Lecture Series (National Aeronautics and Space Administration, 1973), p. 171.
  21. R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972). [CrossRef]
  22. J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955). [CrossRef]
  23. S. D. Coston and N. George, “Particle sizing by inversion of the optical transform pattern,” Appl. Opt. 30, 4785–4794 (1991). [CrossRef]
  24. J. C. Knight, D. Ball, and G. N. Robertson, “Analytical inversion for laser diffraction spectrometry giving improved resolution and accuracy in size distribution,” Appl. Opt. 30, 4795–4799 (1991). [CrossRef]
  25. J. B. Riley, and Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991). [CrossRef]
  26. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Marine Geol. 168, 89–114 (2000). [CrossRef]
  27. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007). [CrossRef]
  28. B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000). [CrossRef]
  29. T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001). [CrossRef]
  30. Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001). [CrossRef]
  31. J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001). [CrossRef]
  32. J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in Southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007). [CrossRef]
  33. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010). [CrossRef]
  34. C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010). [CrossRef]
  35. O. B. Brown and H. R. Gordon, “Size-refractive index distribution of clear coastal water particulates from light scattering,” Appl. Opt. 13, 2874–2881 (1974). [CrossRef]
  36. J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974). [CrossRef]
  37. J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “Numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994). [CrossRef]
  38. X. Zhang, M. Twardowski, and M. Lewis, “Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function,” Appl. Opt. 50, 1240–1259 (2011). [CrossRef]
  39. M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012). [CrossRef]
  40. H. Czerski, M. Twardowski, X. Zhang, and S. Vagle, “Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods,” J. Geophys. Res. 116, C00H11 (2011). [CrossRef]
  41. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean Technol. 20, 563 (2003). [CrossRef]
  42. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004). [CrossRef]
  43. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 129–142 (2001). [CrossRef]
  44. D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. Part 1 40, 1459–1473 (1993). [CrossRef]
  45. J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007). [CrossRef]
  46. W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14, 3602–3615 (2006). [CrossRef]
  47. Y. C. Agrawal and O. A. Mikkelsen, “Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1–21 μm sediment grains,” Opt. Express 17, 8805–8814 (2009). [CrossRef]
  48. Duke Scientific Corporation, “Index of Refraction,” Technical Note 007B (1996).
  49. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009). [CrossRef]
  50. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier Scientific, 1977), p. 243.
  51. B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947). [CrossRef]
  52. F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972). [CrossRef]
  53. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989). [CrossRef]
  54. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995). [CrossRef]
  55. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]
  56. A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992). [CrossRef]
  57. R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000). [CrossRef]
  58. M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992). [CrossRef]
  59. A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542 (1998). [CrossRef]
  60. C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).
  61. M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142(1987). [CrossRef]
  62. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010). [CrossRef]
  63. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 530.
  64. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  65. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
  66. M. A. Yurkin, and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112, 2234–2247 (2011). [CrossRef]
  67. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991). [CrossRef]
  68. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009). [CrossRef]
  69. X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998). [CrossRef]
  70. X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002). [CrossRef]
  71. L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994). [CrossRef]
  72. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  73. C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997). [CrossRef]
  74. S. Taguchi, “Relationship between photosynthesis and cell size of marine diatom,” J. Phycol. 12, 185–189 (1976). [CrossRef]
  75. T. Fujiki and S. Taguchi, “Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance,” J. Plankton Res. 24, 859–874 (2002). [CrossRef]
  76. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249 (1996). [CrossRef]
  77. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113, C04023 (2008). [CrossRef]
  78. S. Andrews, D. Nover, and S. G. Schladow, “Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition,” Limnol. Oceanogr. Methods 8, 507–526 (2010). [CrossRef]
  79. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: analysis of clonal cultures,” Cytometry 10, 596–604 (1989). [CrossRef]
  80. J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989). [CrossRef]
  81. M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996). [CrossRef]
  82. F. J. Doucet, L. Maguire, and J. R. Lead, “Assessment of cross-flow filtration for the size fractionation of freshwater colloids and particles,” Talanta 67, 144–154 (2005). [CrossRef]
  83. D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581–1591 (2005). [CrossRef]
  84. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005). [CrossRef]
  85. D. McKee, M. Chami, I. Brown, V. S. Calzado, D. Doxaran, and A. Cunningham, “Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters,” Appl. Opt. 48, 4663–4675 (2009). [CrossRef]
  86. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004). [CrossRef]
  87. S. G. Ackleson and R. W. Spinrad, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988). [CrossRef]
  88. H. G. Marshall, L. Burchardt, and R. Lacouture, “A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries,” J. Plankton Res. 27, 1083–1102 (2005). [CrossRef]
  89. Y. Huot and M. Babin, “Overview of fluorescence protocols: theory, basic concepts, and practice,” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, D. Suggett, M. A. Borowitzka, and O. Prasil, eds. (Springer, 2010), pp. 31–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited