OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters

Tianshi Wang, Antonius F. W. van der Steen, and Gijs van Soest  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5244-5252 (2012)
http://dx.doi.org/10.1364/AO.51.005244


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Endoscopic optical coherence tomography (OCT) catheters comprise a transparent tube to separate the imaging instrument from tissues. This tube acts as a cylindrical lens, introducing astigmatism into the beam. In this report, we quantified this negative effect using optical simulations of OCT catheter devices, and discuss possible compensation strategies. For esophageal imaging, the astigmatism is aggravated by the long working distance. For intracoronary imaging, the beam quality is degraded due to the liquid imaging environment. A nearly circular beam profile can be achieved by a curved focusing optics. We also consider the method of matching refractive indices, and it is shown to successfully restore a round beam.

© 2012 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 25, 2012
Manuscript Accepted: May 27, 2012
Published: July 18, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Tianshi Wang, Antonius F. W. van der Steen, and Gijs van Soest, "Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters," Appl. Opt. 51, 5244-5252 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-21-5244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retinal Eye Res. 26, 57–77 (2007). [CrossRef]
  3. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006). [CrossRef]
  4. H. L. Fu, Y. Leng, M. J. Cobb, K. Hsu, J. H. Hwang, and X. Li, “Flexible miniature compound lens design for high-resolution optical coherence tomography balloon imaging catheter,” J. Biomed. Opt. 13, 060502 (2008). [CrossRef]
  5. G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C. E. Bisaillon, J. P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15, 046023 (2010). [CrossRef]
  6. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25, 1520–1522 (2000). [CrossRef]
  7. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996). [CrossRef]
  8. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007). [CrossRef]
  9. E. Regar, J. Ligthart, N. Bruining, and G. van Soest, “The diagnostic value of intracoronary optical coherence tomography,” Herz 36, 417–429 (2011). [CrossRef]
  10. F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. van Gemert, and T. G. van Leeuwen, “Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography,” J. Biomed. Opt. 11, 041120 (2006). [CrossRef]
  11. G. J. Tearney, I. K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021002 (2006). [CrossRef]
  12. E. N. Brown, N. S. Burris, J. Gu, Z. N. Kon, P. Laird, S. Kallam, C. M. Tang, J. M. Schmitt, and R. S. Poston, “Thinking inside the graft: applications of optical coherence tomography in coronary artery bypass grafting,” J. Biomed. Opt. 12, 051704(2007). [CrossRef]
  13. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart 89, 317–320 (2003). [CrossRef]
  14. P. Barlis, G. van Soest, P. W. Serruys, and E. Regar, “Intracoronary optical coherence tomography and the evaluation of stents,” Expert Rev. Med. Devices 6, 157–167(2009). [CrossRef]
  15. G. van Soest, E. Regar, T. P. M. Goderie, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, P. W. Serruys, and A. F. W. van der Steen, “Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries,” J. Am. Coll. Cardiol. Img. 4, 810–813 (2011). [CrossRef]
  16. G. van Soest, T. Goderie, E. Regar, S. Koljenovic, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010). [CrossRef]
  17. M. L. Dufour, C.-E. Bisaillon, G. Lamouche, S. Vergnole, M. Hewko, F. D’Amours, C. Padioleau, and M. Sowa, “Tools for experimental characterization of the non-uniform rotational distortion in intravascular OCT probes,” Proc. SPIE 7883, 788339 (2011). [CrossRef]
  18. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43, 113–121 (2004). [CrossRef]
  19. P. Meemon, K. S. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47, 2452–2457 (2008). [CrossRef]
  20. J. Xi, L. Huo, Y. Wu, M. J. Cobb, J. H. Hwang, and X. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34, 1943–1945 (2009). [CrossRef]
  21. W. Kang, H. Wang, Y. Pan, M. W. Jenkins, G. A. Isenberg, A. Chak, M. Atkinson, D. Agrawal, Z. Hu, and A. M. Rollins, “Endoscopically guided spectral-domain OCT with double-balloon catheters,” Opt. Express 18, 17364–17372(2010). [CrossRef]
  22. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008), pp. 397–400.
  23. E. Swanson, C. L. Petersen, E. McNamaram, R. B. Lamport, and D. L. Kelly, “Ultra-small optical probes, imaging optics, and methods for using same,” U.S. Patent 6445939 (3September2002).
  24. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006). [CrossRef]
  25. Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46, 5887–5894 (2007). [CrossRef]
  26. W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, and S. A. Boppart, “Numerical analysis of gradient index lens-based optical coherence tomography imaging probes,” J. Biomed. Opt. 15, 066027 (2010). [CrossRef]
  27. W. T. Silfvast, Laser Fundamentals (Cambridge University, 2003), pp. 402–432.
  28. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics (Springer, 2002).
  29. C. W. Reno, “Laser astigmatism compensation,” U.S. Patent 5239414 (24August1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited