OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar

Alexey F. Bunkin, Vladimir K. Klinkov, Vasily N. Lednev, Dmitry L. Lushnikov, Aleksey V. Marchenko, Eugene G. Morozov, Sergey M. Pershin, and Renat N. Yulmetov  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5477-5485 (2012)
http://dx.doi.org/10.1364/AO.51.005477


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO4:Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (20kg) and low power consumption (300 W) make it possible to install the device on any vehicle, including unmanned aircraft or submarine systems. The Raman lidar presented was used for study and analysis of the different influence of the open sea and glaciers on water properties in Svalbard fjords. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord, and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It was found that the Paula Glacier strongly influences the water temperature and chlorophyll distributions in the Van Mijen Fjord and Rinders Fjord. Possible applications of compact lidar systems for express monitoring of seawater in places with high concentrations of floating ice or near cold streams in the Arctic Ocean are discussed.

© 2012 Optical Society of America

OCIS Codes
(280.3640) Remote sensing and sensors : Lidar
(300.6450) Spectroscopy : Spectroscopy, Raman
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 27, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 23, 2012
Published: July 27, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics
September 4, 2012 Spotlight on Optics

Citation
Alexey F. Bunkin, Vladimir K. Klinkov, Vasily N. Lednev, Dmitry L. Lushnikov, Aleksey V. Marchenko, Eugene G. Morozov, Sergey M. Pershin, and Renat N. Yulmetov, "Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar," Appl. Opt. 51, 5477-5485 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-22-5477


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1985).
  2. C. L. Parkinson, D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, “Arctic sea ice extents, areas and trends, 1978–1996,” J. Geophys. Res. 104, 20837–20856 (1999). [CrossRef]
  3. S. Haykin, E. O. Lewis, R. K. Raney, and J. R. Rossiter, Remote Sensing of Sea Ice and Icebergs (Wiley, 1994).
  4. F. Nirchio, M. Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera, and P. Trivero, “Automatic detection of oil spills from SAR images,” Int. J. Remote Sens. 26, 1157–1174 (2005). [CrossRef]
  5. C. E. Brown and M. F. Fingas, “Review of development of laser fluorosensors for oil spill applications,” Mar. Pollut. Bull. 47, 477–484 (2003). [CrossRef]
  6. M. Fingas and C. E. Brown, “Oil spill remote sensing,” in Oil Spill Environmental Forensics, Z. Wang and S. Stout, eds. (Academic, 2000), pp. 419–448.
  7. S. D. Richardson and T. A. Ternes, “Water analysis: emerging contaminations and current issues,” Anal. Chem. 83, 4614 (2011). [CrossRef]
  8. A. Chaulk, G. A. Stern, D. Armstrong, D. G. Barber, and F. Wang, “Mercury distribution and transport across the ocean—sea-ice—atmosphere interface in the arctic ocean,” Environ. Sci. Technol. 45, 1866– 1872 (2011). [CrossRef]
  9. M. Lennon, S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence,” EARSeL eProceedings 5, 120–128 (2006).
  10. A. F. Bunkin, M. A. Davydov, A. V. Rezov, A. L. Surovegin, and Yu. D. Tsipenyuk, “Helicopter-based lidar complex for emission and fluorescence remote sensing of terrain surfaces,” Laser Phys. 4, 1198–1201 (1994).
  11. V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010). [CrossRef]
  12. S. M. Pershin, V. N. Lednev, and A. F. Bunkin, “Laser ablation of alloys: selective evaporation model,” Phys. Wave Phenom. 19, 261–274 (2011). [CrossRef]
  13. J. J. Laserna, R. Fernández Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17, 10265–10276 (2009). [CrossRef]
  14. O. M. Johannessen, M. Miles, and E. Bjørgo, “The arctic’s shrinking sea ice,” Nature 376, 126–127 (1995). [CrossRef]
  15. O. M. Johannessen, E. V. Shalina, and M. W. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999). [CrossRef]
  16. G. M. Krekov and G. G. Matvienko, “Laser technology development in the remote sensing of atmosphere,” Atmos. Oceanic Opt. 23, 835–844 (2010).
  17. Q. P. Remund and D. G. Long, “Sea ice extent mapping using Ku-band scatterometer data,” J. Geophys. Res. 104, 11515–11527 (1999). [CrossRef]
  18. A. F. Bunkin and K. I. Voliak, Laser Remote Sensing of the Ocean: Methods and Applications (Wiley, 2001).
  19. S. Pershin, A. Lyash, and V. Makarov, “Atmosphere remote sensing by microjoule pulses of diode-laser,” Phys. Vib. 9, 256–260 (2001).
  20. A. V. Soloviev and R. Lukas, “Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool,” Deep-Sea Res. Part I 44, 1055–1076 (1997). [CrossRef]
  21. C. J. Donlon, I. S. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. J. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. A. Wick, W. J. Emery, P. J. Minnett, R. Evans, D. T. Llewellyn-Jones, C. T. Mutlow, R. W. Reynolds, H. Kawamura, and N. A. Rayner, “The global ocean data assimilation experiment high-resolution sea surface temperature pilot project,” Bull. Am. Meteorol. Soc. 88, 1197–1213 (2007). [CrossRef]
  22. S. M. Pershin, A. F. Bunkin, and V. A. Luk’yanchenko, “Evolution of the spectral component of ice in the OH band of water at temperatures from 13 to 99 °C,” Quantum Electron. 40, 1146–1148 (2010). [CrossRef]
  23. S. M. Pershin and A. F. Bunkin, “‘A jump’ in the position and width of the raman band envelope of O-H valence vibrations upon phase transitions of the first and second kinds in water,” Opt. Spectrosc. 85, 190–193 (1998).
  24. N. P. Andreeva, A. F. Bunkin, and S. M. Pershin, “Deformation of the raman scattering spectrum of Ih ice under local laser heating near 0 °C,” Opt. Spectrosc. 93, 252–256 (2002). [CrossRef]
  25. M. Becucci, S. Cavalieri, R. Eramo, L. Fini, and M. Materazzi, “Raman spectroscopy for water temperature sensing,” Laser Phys. 9, 422–425 (1999). [CrossRef]
  26. Q. Sun, “The Raman OH stretching bands of liquid water,” Vib. Spectrosc. 51, 213–217 (2009). [CrossRef]
  27. K.-J. Lee, Y. Park, A. Bunkin, R. Nunes, S. Pershin, and K. Voliak, “Helicopter-based lidar system for monitoring the upper ocean and terrain surface,” Appl. Opt. 41, 401–406 (2002). [CrossRef]
  28. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6983 (1986). [CrossRef]
  29. A. F. Bunkin, V. K. Klinkov, V. A. Lukyanchenko, and S. M. Pershin, “Ship wakes detection by Raman lidar,” Appl. Opt. 50, A86–A89 (2011). [CrossRef]
  30. J. N. Porter, C. E. Helsley, S. K. Sharma, A. K. Misra, D. E. Bates, and B. R. Lienert, “Two-dimensional standoff Raman measurements of distant samples,” J. Raman Spectrosc. 43, 165–166 (2012). [CrossRef]
  31. S.-H. Park, Y.-G. Kim, D. Kim, H.-D. Cheong, W.-S. Choi, and J.-I. Lee, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010). [CrossRef]
  32. V. Fadeev, S. Burikov, P. Volkov, V. Lapshin, and A. Syroeshkin, “Raman scattering and fluorescence spectra of water from the sea surface microlayer,” Oceanology 49, 205–210 (2009). [CrossRef]
  33. A. Wang, L. A. Haskin, A. L. Lane, T. J. Wdowiak, S. W. Squyres, R. J. Wilson, L. E. Hovland, K. S. Manatt, N. Raouf, and C. D. Smith, “Development of the Mars microbeam Raman spectrometer,” J. Geophys. Res. 108, 5005–5008(2003). [CrossRef]
  34. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, A. Palucci, E. Artamonov, and M. Galli, “Remotely sensed primary production in the western Ross Sea: results of in situ tuned models,” Antarct. Sci. 15, 77–84 (2003). [CrossRef]
  35. R. Barbini, F. Colao, R. Fantoni, L. Fiorani, and A. Palucci, “Lidar fluorosensor calibration of the SeaWiFS chlorophyll algorithm in the Ross Sea,” Int. J. Remote Sens. 24, 3205–3218 (2003). [CrossRef]
  36. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef]
  37. R. C. Smith, and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–183 (1981). [CrossRef]
  38. N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749–758 (2001). [CrossRef]
  39. I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Y. Pishchainikov, and A. P. Razjivin, “Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated,” Biol. Membr. 26, 180–187(2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited