OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects

Antti Kauppila, Matti Kinnunen, Artashes Karmenyan, and Risto Myllylä  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5705-5712 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical tweezers and their various modifications offer a sophisticated way to perform noncontact cell manipulation. In this paper, we quantify forces existing in an elliptical trap formed by two cylindrical lenses and compare the results with a point optical trap case. The trapping efficiency of point and elliptical traps was analyzed by measuring the Q values of both traps. Polystyrene microspheres and red blood cells (RBCs) were used as samples. Stretching of the RBC was taken into account in the Q value measurements. Although the Q value of a point optical trap is larger than that of an elliptical trap when measured for a single RBC, we can manipulate the orientation of an RBC in a point trap with the elliptical trap and can also trap several RBCs simultaneously in the elliptical trap far from the cuvette surfaces by using a long-working-distance water immersion objective. This opens new possibilities for studying light–matter interactions at the cellular level.

© 2012 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Tweezers or Optical Manipulation

Original Manuscript: April 27, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 6, 2012
Published: August 8, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Antti Kauppila, Matti Kinnunen, Artashes Karmenyan, and Risto Myllylä, "Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects," Appl. Opt. 51, 5705-5712 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  3. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989). [CrossRef]
  4. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994). [CrossRef]
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997). [CrossRef]
  6. P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002). [CrossRef]
  7. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861–4869 (1999). [CrossRef]
  8. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7, 533–539 (2000). [CrossRef]
  9. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991). [CrossRef]
  10. G. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of biconcave human red blood cells,” Opt. Express 16, 1996–2004 (2008). [CrossRef]
  11. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003). [CrossRef]
  12. J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).
  13. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003). [CrossRef]
  14. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef]
  15. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002). [CrossRef]
  16. S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005). [CrossRef]
  17. P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006). [CrossRef]
  18. E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009). [CrossRef]
  19. H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009). [CrossRef]
  20. M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010). [CrossRef]
  21. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011). [CrossRef]
  22. A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011). [CrossRef]
  23. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004). [CrossRef]
  24. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Groot, and J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996). [CrossRef]
  25. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004). [CrossRef]
  26. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994). [CrossRef]
  27. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  28. http://24.www.bangslabs.com/products/o/list/Polymer%20Microspheres/PS05N/7 .
  29. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999). [CrossRef]
  30. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  31. D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol. 6, 153–161 (1987). [CrossRef]
  32. E. Loth, “Drag of non-spherical solid particles of regular and irregular shape,” Powder Technol. 182, 342–353 (2008). [CrossRef]
  33. H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995). [CrossRef]
  34. W. R. Platt, Color Atlas and Textbook of Hematology (Pitman Medical Publishing Co, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited