OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Modeling of fiber-optic fluorescence probes for strongly absorbing samples

Dorit Munzke, John Saunders, Hengameh Omrani, Oliver Reich, and Hans-Peter Loock  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6343-6351 (2012)
http://dx.doi.org/10.1364/AO.51.006343


View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamic range of fiber-optic fluorescent probes such as single fibers and fiber bundles is calculated for strongly absorbing samples, such as process liquids, foodstuffs, and lubricants. The model assumes an excitation beam profile based on a Lambertian light source and uses analytical forms of the collection efficiency, followed by an Abel transformation and numerical integration. It is found that the effect of primary absorption of the excitation light and secondary absorption of the fluorescence is profound. For fiber bundles and bifurcated fiber probes, the upper accessible concentration limit is roughly given by the absorption length of the primary and secondary absorption. Fluorescence detectors that are placed at right angles to the excitation beam axis or collinear to the beam axis are equally strongly affected by secondary absorption. A probe in which the same fiber is used for excitation and for collection of the fluorescence emerges as the fiber probe with the largest accessible concentration range.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(220.2740) Optical design and fabrication : Geometric optical design
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopy

History
Original Manuscript: June 20, 2012
Revised Manuscript: August 3, 2012
Manuscript Accepted: August 5, 2012
Published: September 7, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Dorit Munzke, John Saunders, Hengameh Omrani, Oliver Reich, and Hans-Peter Loock, "Modeling of fiber-optic fluorescence probes for strongly absorbing samples," Appl. Opt. 51, 6343-6351 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-26-6343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Mignani, L. Ciaccheri, C. Cucci, A. A. Mencaglia, A. Cimato, C. Attilio, H. Ottevaere, H. Thienpont, R. Paolesse, M. Mastroianni, D. Monti, M. Gerevini, G. Buonocore, M. A. Del Nobile, A. Mentana, M. F. Grimaldi, C. Dall’Asta, A. Faccini, G. Galaverna, and A. Dossena, “EAT-by-LIGHT: fiber-optic and micro-optic devices for food quality and safety assessment,” IEEE Sens. J. 8, 1342–1354 (2008). [CrossRef]
  2. E. V. Trujillo, D. R. Sandison, U. Utzinger, N. Ramanujam, M. F. Mitchell, and R. Richards-Kortum, “Method to determine tissue fluorescence efficiency in vivo and predict signal-to-noise ratio for spectrometers,” Appl. Spectrosc. 52, 943–951(1998). [CrossRef]
  3. N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996). [CrossRef]
  4. T. J. Pfefer, K. T. Schomacker, and N. S. Nishioka, “Effect of fiber optic probe design on fluorescent light propagation in tissue,” Proc. SPIE 4257, 410–416 (2001). [CrossRef]
  5. M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst 131, 1308–1315 (2006). [CrossRef]
  6. A. G. Mignani, L. Ciaccheri, N. Díaz-Herrera, A. A. Mencaglia, H. Ottevaere, H. Thienpont, S. Francalanci, A. Paccagnini, and F. S. Pavone, “Optical fiber spectroscopy for measuring quality indicators of lubricant oils,” Meas. Sci. Technol. 20, 034011 (2009). [CrossRef]
  7. K. R. Rogers and E. J. Poziomek, “Fiber optic sensors for environmental monitoring,” Chemosphere 33, 1151–1174 (1996). [CrossRef]
  8. H. Omrani, J. A. Barnes, A. E. Dudelzak, H.-P. Loock, and H. Waechter, “Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes,” Analyst 137, 2782–2790 (2012). [CrossRef]
  9. J. J. Ma, Y. Chiniforooshan, W. H. Hao, W. J. Bock, and Z. Y. Wang, “Easily fabricated, robust fiber-optic probe for weak fluorescence detection: modeling and initial experimental evaluation,” Opt. Express 20, 4805–4811 (2012). [CrossRef]
  10. P. Plaza, Q. D. Nguyen, M. Jouan, H. Fevrier, and H. Saisse, “Simulation and optimization of adjacent optical fiber sensors,” Appl. Opt. 25, 3448–3454 (1986). [CrossRef]
  11. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996). [CrossRef]
  12. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996). [CrossRef]
  13. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000). [CrossRef]
  14. Y. C. Kim, J. A. Jordan, D. Chavez, and K. S. Booksh, “Coaxial fiber-optic chemical-sensing excitation—emission matrix fluorometer,” Opt. Lett. 36, 355–357 (2011). [CrossRef]
  15. L. Wang, H. Y. Choi, Y. M. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15, 17681–17689 (2007). [CrossRef]
  16. T. Papaioannou, N. W. Preyer, Q. Y. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Appl. Opt. 43, 2846–2860 (2004). [CrossRef]
  17. G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282, 2676–2684 (2009). [CrossRef]
  18. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011). [CrossRef]
  19. P. S. Hsu, W. D. Kulatilaka, N. B. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012). [CrossRef]
  20. K. B. Ozanyan, T. L. Yeo, F. P. Hindle, N. R. J. Poolton, H. McCann, and K. L. Tan, “Fiber-based UV laser-diode fluorescence sensor for commercial gasolines,” IEEE Sens. J. 4, 681–690 (2004). [CrossRef]
  21. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 044016 (2005). [CrossRef]
  22. G. He and F. W. Cuomo, “A light-intensity function suitable for multimode fiberoptic sensors,” J. Lightwave Technol. 9, 545–551 (1991). [CrossRef]
  23. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81, 212–213 (2005). [CrossRef]
  24. H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998). [CrossRef]
  25. W. F. Rong, Y. X. Wang, T. Y. Chai, Y. K. Yeo, M. T. Zhou, and T. H. Cheng, “Bandwidth enhancement of multimode fiber based on a cost-effective periodic mode-scrambling method,” Opt. Eng. 47, 115002 (2008). [CrossRef]
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), Chap. 5.
  27. A. Larson, V. Iyer, T. Hoogland, and P. Saggau, “Fiber-coupled non-descanned 4π detection with a commercial confocal microscope modified for multiphoton imaging,” Proc. SPIE 4963, 239–251 (2003). [CrossRef]
  28. P. T. Tran and F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201, 235–236 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited