OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Rotation of nanowires with radially higher-order Laguerre–Gaussian beams produced by computer-generated holograms

Li Shi, Jing Li, Tao Tao, and Xiaoping Wu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 26, pp. 6398-6402 (2012)
http://dx.doi.org/10.1364/AO.51.006398


View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the influence of radially higher index p of Laguerre–Gaussian (LG) beams on the rotation of nanowires is studied. Radially higher-order LG beams are produced by computer-generated holograms, which are displayed on a spatial light modulator. A series of experiments on manipulating ZnO nanowires was performed on our holographic optical tweezers platform. The experiments demonstrated that radially higher-order LG beams could effectively rotate nanowires along the innermost bright ring of themselves. Compared with radially low-order LG beams, they have larger torques exerted on nanowires and can make nanowires rotate more quickly.

© 2012 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.3720) Optical devices : Liquid-crystal devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Holography

History
Original Manuscript: April 2, 2012
Manuscript Accepted: August 11, 2012
Published: September 10, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Li Shi, Jing Li, Tao Tao, and Xiaoping Wu, "Rotation of nanowires with radially higher-order Laguerre–Gaussian beams produced by computer-generated holograms," Appl. Opt. 51, 6398-6402 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-26-6398


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  2. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  4. A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139–143 (2000). [CrossRef]
  5. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998). [CrossRef]
  6. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004). [CrossRef]
  7. D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45, 880–887 (2006). [CrossRef]
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  9. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef]
  10. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006). [CrossRef]
  11. Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005). [CrossRef]
  12. D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. Di Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78–79, 125–131 (2005). [CrossRef]
  13. Y. Ohtake, T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, and T. Hara, “Universal generation of higher-order multiringed Laguerre–Gaussian beams by using a spatial light modulator,” Opt. Lett. 32, 1411–1413 (2007). [CrossRef]
  14. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642–1651 (2008). [CrossRef]
  15. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003). [CrossRef]
  16. T. Tao, J. Li, Q. Long, and X. Wu, “3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms,” Chin. Opt. Lett. 9, 120010 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited