OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Analytical modeling and three-dimensional finite element simulation of line edge roughness in scatterometry

Akiko Kato, Sven Burger, and Frank Scholze  »View Author Affiliations

Applied Optics, Vol. 51, Issue 27, pp. 6457-6464 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of edge roughness in angle-resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes such as, e.g., in photolithography. We compared an analytical two-dimensional (2D) model and a numerical three-dimensional simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement. The diffraction intensities of a rough structure can therefore be estimated using the numerical simulation result of an undisturbed structure and an analytically derived correction function. This work allows to improve scatterometric results for the case of practically relevant 2D structures.

© 2012 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(290.5820) Scattering : Scattering measurements
(290.5880) Scattering : Scattering, rough surfaces
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: July 6, 2012
Manuscript Accepted: August 13, 2012
Published: September 11, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Akiko Kato, Sven Burger, and Frank Scholze, "Analytical modeling and three-dimensional finite element simulation of line edge roughness in scatterometry," Appl. Opt. 51, 6457-6464 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Germer, “Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure,” J. Opt. Soc. Am. A 24, 696–701 (2007). [CrossRef]
  2. T. A. Germer, “Modeling the effect of line profile variation on optical critical dimension metrology,” Proc. SPIE 6518, 65180Z (2007). [CrossRef]
  3. P. P. Naulleau, “Effect of mask-roughness on printed contact-size variation in extreme-ultraviolet lithography,” Appl. Opt. 44, 183–189 (2005). [CrossRef]
  4. H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates,” Meas. Sci. Technol. 20, 105102 (2009). [CrossRef]
  5. P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desières, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005). [CrossRef]
  6. C. Wang, R. L. Jones, E. K. Lin, W. Wu, B. J. Rice, K. Choi, G. Thompson, S. J. Weigand, and D. T. Keane, “Characterization of correlated line edge roughness of nanoscale line gratings using small angle x-ray scattering,” J. Appl. Phys. 102, 024901 (2007). [CrossRef]
  7. F. Scholze and C. Laubis, “Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks,” Proc. SPIE 6792, 67920U (2008). [CrossRef]
  8. B. Bodermann, M. Wurm, A. Diener, F. Scholze, and H. Groß, “EUV and DUV scatterometry for CD and edge profile metrology on EUV masks,” Proc. SPIE 7470, 74700F (2009). [CrossRef]
  9. J. Pomplun, S. Burger, F. Schmidt, F. Scholze, C. Laubis, and U. Dersch, “Metrology of EUV masks by EUV-scatterometry and finite element analysis,” Proc. SPIE 7028, 70280P(2008). [CrossRef]
  10. S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “Rigorous simulations of 3D patterns on extreme ultraviolet lithography masks,” Proc. SPIE 8083, 80831B (2011). [CrossRef]
  11. F. Scholze, B. Bodermann, H. Groß, A. Kato, and M. Wurm, “First steps towards traceability in scatterometry,” Proc. SPIE 7985, 79850G (2011). [CrossRef]
  12. A. Kato and F. Scholze, “The effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Proc. SPIE 8083, 80830K (2011). [CrossRef]
  13. A. Kato and F. Scholze, “Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Opt. 49, 6102–6110 (2010). [CrossRef]
  14. H. Gross, M.-A. Henn, A. Rathsfeld, and M. Bär, “Stochastic modeling aspects for an improved solution of the inverse problem in scatterometry,” in Advanced Mathematical and Computional Tools in Metrology and Testing IX, Vol. 84 of Series on Advances in Mathematics for Applied Sciences (World Scientific, 2012), pp. 202–209.
  15. T. Schuster, S. Rafler, K. Frenner, and W. Osten, “Influence of line edge roughness (LER) on angular resolved and on spectroscopic scatterometry,” Proc. SPIE 7155, 71550W (2008). [CrossRef]
  16. B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximation for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1089 (2010). [CrossRef]
  17. T. Schuster, S. Rafler, V. Ferreras Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009). [CrossRef]
  18. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of Applied Mathematical Sciences (Springer, 1998).
  19. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi B 244, 3419–3434 (2007). [CrossRef]
  20. D. Lockau, L. Zschiedrich, S. Burger, F. Schmidt, F. Ruske, and B. Rech, “Rigorous optical simulation of light management in crystalline silicon thin film solar cells with rough interface textures,” Proc. SPIE 7933, 79330M (2011). [CrossRef]
  21. A. Schädle, L. Zschiedrich, S. Burger, R. Klose, and F. Schmidt, “Domain decomposition method for Maxwell’s equations: Scattering off periodic structures,” J. Comput. Phys. 226, 477–493 (2007). [CrossRef]
  22. S. Burger, L. Zschiedrich, J. Pomplun, F. Schmidt, A. Kato, C. Laubis, and F. Scholze, “Investigation of 3D patterns on EUV masks by means of scatterometry and comparison to numerical simulations,” Proc. SPIE 8166, 81661Q (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited