OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

Curtis D. Mobley and Emmanuel S. Boss  »View Author Affiliations


Applied Optics, Vol. 51, Issue 27, pp. 6549-6560 (2012)
http://dx.doi.org/10.1364/AO.51.006549


View Full Text Article

Enhanced HTML    Acrobat PDF (5147 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate calculation of underwater light is fundamental to predictions of upper-ocean heating, primary production, and photo-oxidation. However, most ocean models simulating these processes do not yet incorporate radiative transfer modules for their light calculations. Such models are often driven by above-surface, broadband, daily averaged irradiance or photosynthetically available radiation (PAR) values obtained from climatology or satellite observations, sometimes without correction for sea-surface reflectance, even though surface reflectance can reduce in-water values by more than 20%. We present factors computed by a radiative transfer code that can be used to convert above-surface values in either energy or quantum units to in-water net irradiance, as needed for calculations of water heating, and to in-water PAR, as needed for calculations of photosynthesis and photo-oxidation.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 25, 2012
Revised Manuscript: July 30, 2012
Manuscript Accepted: August 14, 2012
Published: September 14, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Curtis D. Mobley and Emmanuel S. Boss, "Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations," Appl. Opt. 51, 6549-6560 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-27-6549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. D. Dickey and P. G. Falkowski, “Solar energy and its biological-physical interactions in the sea,” in The Sea, A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, eds. (Wiley, 2002), pp. 401–440.
  2. C. A. Paulson and J. J. Simpson, “Irradiance measurements in the upper ocean,” J. Phys. Oceanogr. 7, 952–956 (1977). [CrossRef]
  3. J. J. Simpson and T. D. Dickey, “The relationship between downward irradiance and upper ocean structure,” J. Phys. Oceanogr. 11, 309–323 (1981). [CrossRef]
  4. J. C. Ohlmann, D. A. Siegel, and C. D. Mobley, “Ocean radiant heating. Part I: Optical influences,” J. Phys. Oceanogr. 30, 1833–1848 (2000). [CrossRef]
  5. J. C. Ohlmann and D. A. Siegel, “Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean,” J. Phys. Oceanogr. 30, 1849–1865 (2000). [CrossRef]
  6. J. C. Ohlmann, “Ocean radiant heating in climate models,” J. Clim. 16, 1337–1351 (2003). [CrossRef]
  7. C. D. Mobley, B. Gentili, H. Gordon, Z. Jin, G. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. Stavn, “Comparison of numerical models for the computation of underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef]
  8. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  9. C. D. Mobley, Ocean Optics Web Book: HydroLight (2011), http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/hydrolight.
  10. E. K. Schneider and Z. Zhu, “Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration,” J. Clim. 11, 1932–1950 (1998). [CrossRef]
  11. S. Nakamoto, S. P. Kumar, J. M. Oberhuber, K. Muneyama, and R. Frouin, “Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model,” Geophys. Res. Lett. 27, 747–750 (2000). [CrossRef]
  12. S. Nakamoto, S. P. Kumar, J. M. Oberhuber, J. Ishizaka, K. Muneyama, and R. Frouin, “Response of the equatorial Pacific to chlorophyll pigments in a mixed-layer isopycnal general circulation model,” Geophys. Res. Lett. 28, 2021–2024 (2001). [CrossRef]
  13. R. Murtugudde, J. Beauchamp, C. R. McClain, M. Lewis, and A. J. Busalacchi, “Effects of penetrative radiation on the upper tropical ocean circulation,” J. Clim. 15, 470–486 (2002). [CrossRef]
  14. P. A. Rochford, A. B. Kara, A. J. Wallcraft, and R. A. Arnone, “Importance of solar subsurface heating in ocean general circulation models,” J. Geophys. Res. 106, 30923–30938 (2001). [CrossRef]
  15. A. B. Kara, A. J. Wallcraft, and H. E. Hurlburt, “A new solar radiation penetration scheme for use in ocean mixed layer studies: An application to the Black Sea using a fine-resolution hybrid coordinate ocean model (HYCOM),” J. Phys. Oceanogr. 35, 13–32 (2005). [CrossRef]
  16. C. Sweeney, A. Gnanadesikan, S. M. Griffies, M. J. Harrison, A. J. Rosati, and B. L. Samuels, “Impacts of shortwave penetration depth on large-scale ocean circulations and heat transport,” J. Phys. Oceanogr. 35, 1103–1119 (2005). [CrossRef]
  17. A. Oschlies, “Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model,” J. Geophys. Res. 109, C12031 (2004). [CrossRef]
  18. M. Manizza, C. L. Quéré, A. J. Watson, and E. T. Buitenhuis, “Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model,” Geophys. Res. Lett. 32, L05603 (2005). [CrossRef]
  19. G. Danabasoglu, W. G. Large, J. J. Tribbia, P. R. Gent, and B. P. Briegleb, “Diurnal coupling in the tropical oceans of CCSM3,” J. Clim. 19, 2347–2365 (2006). [CrossRef]
  20. K. M. Shell, F. Frouin, S. Nakamoto, and R. C. J. Somerville, “Atmospheric response to solar radiation absorbed by phytoplankton,” J. Geophys. Res. 108, 4445–4452 (2003). [CrossRef]
  21. P. Wetzel, E. Maier-Reimer, M. Botzet, and J. Jungclaus, “Effects of ocean biology on the penetrative radiation in a coupled climate model,” J. Clim. 19, 3973–3987 (2006). [CrossRef]
  22. M. Jochum, S. Yeager, K. Lindsay, K. Moore, and R. Murtagudde, “Quantification of the feedback between phytoplankton and ENSO in the Community Climate System Model,” J. Clim. 23, 2916–2925 (2010). [CrossRef]
  23. W. W. Gregg and N. W. Casey, “Skill assessment of a spectral ocean-atmosphere radiative model,” J. Marine Syst. 76, 49–63 (2009). [CrossRef]
  24. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  25. W. W. Gregg, “Tracking the SeaWiFS record with a coupled physical/biogeochemical/radiative model of the global oceans,” Deep-Sea Res. II 49, 81–105 (2001). [CrossRef]
  26. “GMAO ocean biology and biogeochemical modeling” (2012), https://gmao.gsfc.nasa.gov/research/oceanbiology/.
  27. C. D. Mobley, “Fast light calculations for ocean ecosystem and inverse models,” Opt. Express 19, 18927–18944 (2011). [CrossRef]
  28. M. Fujii, E. Boss, and F. Chai, “The value of adding optics to ecosystem models: A case study,” Biogeosciences 4, 817–835 (2007). [CrossRef]
  29. C. D. Mobley, L. K. Sundman, W. P. Bissett, and B. Cahill, “Fast and accurate irradiance calculations for ecosystem models,” Biogeosci. Discuss. 6, 10625–10662 (2009). [CrossRef]
  30. C. D. Mobley and F. Chai, “Improved ocean ecosystem predictions via improved optics,” to be presented at Ocean Optics XXI, Glasgow, Scotland, 8–12 October 2012.
  31. M. J. Behrenfeld, T. K. Westbury, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescense reveals global physiology of ocean phytoplankton,” Biogeosciences 6, 779–794 (2009). [CrossRef]
  32. J.-P. Gattuso, B. Gentili, C. M. Duarte, J. A. Kelypas, J. J. Middelburg, and D. Antoine, “Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production,” Biogeosciences 3, 489–513 (2006). [CrossRef]
  33. K. Mopper and D. J. Kieber, Marine Photochemistry and Its Impact on Carbon Cycling (Cambridge University, 2000).
  34. P. Coble, “Marine optical biogeochemistry: The chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007). [CrossRef]
  35. R. Frouin, B. A. Franz, and J. Werdell, “The SeaWiFS PAR product,” in NASA Technical Memo 2003–206892, Vol. 22: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2003), pp. 50–54.
  36. J. Aiken and G. Moore, “ATBD photosynthetically available radiation (PAR),” Technical report (Plymouth Marine Lab, 1997).
  37. C. D. Mobley, “EcoLight-S 1.0 users’ guide and technical documentation,” Technical report (Sequoia Scientific, Inc., 2011), http://www.sequoiasci.com/products/els-radiative.cmsx.
  38. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  39. C. Cox and W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  40. P. Gege, “Analytic model for the direct and diffuse components of downwelling spectral irradiance in water,” Appl. Opt. 51, 1407–1419 (2012). [CrossRef]
  41. F. Kasten and G. Czeplak, “Solar and terrestrial radiation dependent on the amount and type of cloud,” Sol. Energy 24, 177–189 (1980). [CrossRef]
  42. A. W. Harrison and C. A. Coombes, “Angular distribution of clear sky short wavelength radiance,” Sol. Energy 40, 57–63 (1988). [CrossRef]
  43. A. W. Harrison and C. A. Coombes, “An opaque cloud cover model of sky short wavelength radiance,” Sol. Energy 41, 387–392 (1988). [CrossRef]
  44. C. D. Mobley, “Ocean optics web book: A new IOP model for Case 1 water,” 2010, http://www.oceanopticsbook.info/view/optical_constituents_of_the_ocean/__level_2/a_new_iop_model_for_case_1_water.
  45. R. M. Letelier, D. M. Karl, M. R. Abbot, and R. R. Bidigare, “Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyer,” Limnol. Oceanogr. 49, 508–519 (2004). [CrossRef]
  46. M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, M. N. Aita, D. Antoine, K. R. Arrigo, I. Asanuma, O. Aumont, R. Barber, M. Behrenfeld, R. Bidigare, E. T. Buitenhuis, J. Campbell, A. Ciotti, H. Dierssen, M. Dowell, J. Dunne, W. Esaias, B. Gentili, W. Gregg, S. Groom, N. Hoepffner, J. Ishizaka, T. Kameda, C. L. Quéré, S. Lorenz, J. Marra, F. Mélin, K. Moore, A. Morel, T. E. Reddy, J. Ryan, M. Scardi, T. Smyth, K. Turpie, G. Tilstone, K. Waters, and Y. Yamanaka, “A comparison of global estimates of marine primary production from ocean color,” Deep-Sea Res. II 53, 741–770 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited